Skip to main content
Log in

Circuit Complexity of Regular Languages

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We survey the current state of knowledge on the circuit complexity of regular languages and we prove that regular languages that are in AC0 and ACC0 are all computable by almost linear size circuits, extending the result of Chandra et al. (J. Comput. Syst. Sci. 30:222–234, 1985). As a consequence we obtain that in order to separate ACC0 from NC1 it suffices to prove for some ε>0 an Ω(n 1+ε) lower bound on the size of ACC0 circuits computing certain NC1-complete functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida, J.: Finite Semigroups and Universal Algebra. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  2. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC 1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barrington, D.A.M., Compton, K.J., Straubing, H., Thérien, D.: Regular languages in NC 1. J. Comput. Syst. Sci. 44(3), 478–499 (1992)

    Article  MATH  Google Scholar 

  4. Barrington, D.A.M., Thérien, D.: Finite monoids and the fine structure of NC 1. J. ACM 35(4), 941–952 (1988)

    Article  Google Scholar 

  5. Bilardi, G., Preparata, F.P.: Characterization of associative operations with prefix circuits of constant depth and linear size. SIAM J. Comput. 19(2), 246–255 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chandra, A.K., Fortune, S., Lipton, R.J.: Lower bounds for constant depth circuits for prefix problems. In: Proc. of the 10th ICALP, pp. 109–117 (1983)

  7. Chandra, A.K., Fortune, S., Lipton, R.J.: Unbounded fan-in circuits and associative functions. J. Comput. Syst. Sci. 30, 222–234 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dolev, D., Dwork, C., Pippenger, N., Wigderson, A.: Superconcentrators, generalizers and generalized connectors with limited depth (preliminary version). In: Proc. of 15th STOC, pp. 42–51 (1983)

  9. Furst, M., Saxe, J., Sipser, M.: Parity, circuits and the polynomial time hierarchy. Math. Syst. Theory 17, 13–27 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Håstad, J.: Almost optimal lower bounds for small depth circuits. In: Proc. of the 18th STOC, pp. 6–20 (1986)

  11. Chaudhuri, S., Radhakrishnan, J.: Deterministic restrictions in circuit complexity. In: Proc. of the 28th STOC, pp. 30–36 (1996)

  12. Koucký, M., Lautemann, C., Poloczek, S., Thérien, D.: Circuit lower bounds via Ehrenfeucht-Fraisse games. In: Proc. of the 21st IEEE Conference on Computational Complexity, pp. 190–201 (2006)

  13. Koucký, M., Pudlák, P., Thérien, D.: Bounded-depth circuits: Separating wires from gates. In: Proc. of the 37th STOC, pp. 257–265 (2005)

  14. McNaughton, R., Papert, S.A.: Counter-Free Automata. MIT Press, Cambridge (1971)

    MATH  Google Scholar 

  15. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Language Theory, vol. I, pp. 679–746. Springer, Berlin (1997). Chap. 10

    Google Scholar 

  16. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  17. Pudlák, P.: Communication in bounded depth circuits. Combinatorica 14(2), 203–216 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ragde, P., Wigderson, A.: Linear-size constant-depth polylog-threshold circuits. Inf. Process. Lett. 39, 143–146 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schwentick, T., Thérien, D., Vollmer, H.: Partially ordered two-way automata: a new characterization of DA. In: Proc. of DLT, pp. 242–253 (2001)

  20. Straubing, H.: Families of recognizable sets corresponding to certain varieties of finite monoids. J. Pure Appl. Algebra 15(3), 305–318 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8(2), 190–194 (1965)

    Article  MATH  Google Scholar 

  22. Tesson, P., Thérien, D.: Diamonds are forever: the variety DA. In: Gomez, G., Silva, P., Pin, J.-E. (eds.) Semigroups, Algorithms, Automata and Languages, pp. 475–500. World Scientific, Singapore (2002)

    Google Scholar 

  23. Tesson, P., Thérien, D.: Complete classifications for the communication complexity of regular languages. Theory Comput. Syst. 38(2), 135–159 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tesson, P., Thérien, D.: Restricted two-variable sentences, circuits and communication complexity. In: Proc. of ICALP, pp. 526–538 (2005)

  25. Tesson, P., Thérien, D.: Bridges between algebraic automata theory and complexity theory. In: The Complexity Column, Bull. EATCS, vol. 88, pp. 37–64 (2006)

  26. Thérien, D.: Classification of finite monoids: the language approach. Theor. Comput. Sci. 14, 195–208 (1981)

    Article  MATH  Google Scholar 

  27. Vollmer, H.: Introduction to circuit complexity—a uniform approach. In: Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Koucký.

Additional information

Partially supported by grant GA ČR 201/07/P276, project No. 1M0021620808 of MŠMT ČR and Institutional Research Plan No. AV0Z10190503.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koucký, M. Circuit Complexity of Regular Languages. Theory Comput Syst 45, 865–879 (2009). https://doi.org/10.1007/s00224-009-9180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-009-9180-z

Keywords

Navigation