Theory of Computing Systems

, Volume 44, Issue 2, pp 160–174 | Cite as

Wooden Geometric Puzzles: Design and Hardness Proofs

  • Helmut Alt
  • Hans Bodlaender
  • Marc van KreveldEmail author
  • Günter Rote
  • Gerard Tel
Open Access


We discuss some new geometric puzzles and the complexity of their extension to arbitrary sizes. For gate puzzles and two-layer puzzles we prove NP-completeness of solving them. Not only the solution of puzzles leads to interesting questions, but also puzzle design gives rise to interesting theoretical questions. This leads to the search for instances of partition that use only integers and are uniquely solvable. We show that instances of polynomial size exist with this property. This result also holds for partition into k subsets with the same sum: We construct instances of n integers with subset sum O(n k+1), for fixed k.


Geometric puzzles Complexity Partition 


  1. 1.
    Cubism For Fun website.
  2. 2.
    Culberson, J.: SOKOBAN is PSPACE-complete. In: Proceedings in Informatics 4 (Int. Conf. FUN with Algorithms 1998), pp. 65–76 (1999) Google Scholar
  3. 3.
    Demaine, E.D.: Playing games with algorithms: Algorithmic combinatorial game theory. In: Proc. of Math. Found. of Comp. Sci., pp. 18–32 (2001) Google Scholar
  4. 4.
    Demaine, E.D., Demaine, M.L.: Puzzles, art, and magic with algorithms. Theory Comput. Syst. 39(3), 473–481 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Demaine, E.D., Hohenberger, S., Liben-Nowell, D.: Tetris is hard, even to approximate. Technical Report MIT-LCS-TR-865, MIT (2002) Google Scholar
  6. 6.
    Flake, G.W., Baum, E.B.: Rush Hour is PSPACE-complete, or why you should generously tip parking lot attendants. Manuscript (2001) Google Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979) zbMATHGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ratner, D., Warmuth, M.: Finding a shortest solution for the N * N-extension of the 15-puzzle is intractable. J. Symb. Comput. 10, 111–137 (1990) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Robertson, E., Munro, I.: NP-completeness, puzzles, and games. Util. Math. 13, 99–116 (1978) MathSciNetGoogle Scholar
  11. 11.
    van Kreveld, M.: Some tetraform puzzles. Cubism For Fun 68, 12–15 (2005) Google Scholar
  12. 12.
    van Kreveld, M.: Gate puzzles. Cubism For Fun 71, 28–30 (2006) Google Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • Helmut Alt
    • 1
  • Hans Bodlaender
    • 2
  • Marc van Kreveld
    • 2
    Email author
  • Günter Rote
    • 1
  • Gerard Tel
    • 2
  1. 1.Department of Computer ScienceFreie Universität BerlinBerlinGermany
  2. 2.Department of Information and Computing SciencesUtrecht UniversityUtrechtNetherlands

Personalised recommendations