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Abstract We discuss some new geometric puzzles and the complexity of their
extension to arbitrary sizes. For gate puzzles and two-layer puzzles we prove
NP-completeness of solving them. Not only the solution of puzzles leads to inter-
esting questions, but also puzzle design gives rise to interesting theoretical ques-
tions. This leads to the search for instances of partition that use only integers and are
uniquely solvable. We show that instances of polynomial size exist with this property.
This result also holds for partition into k subsets with the same sum: We construct
instances of n integers with subset sum O(nk+1), for fixed k.
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1 Introduction

Many good puzzles are instances of problems that are in general NP-complete. Con-
versely, NP-complete problems may be the inspiration for the design of nice puzzles.
This is true for puzzles based on combinatorics, graphs, and geometry.

A puzzler’s classification system of geometric puzzles exists that includes the
classes Put-Together, Take Apart, Sequential Movement, and various others [1]. Al-
though instances of puzzles in these classes have constant size, the natural generaliza-
tion of many of them to sizes based on some parameter are NP-complete. For exam-
ple, Instant Insanity is NP-complete [7, 10], sliding block puzzles like the 15-puzzle,
Sokoban, and Rush Hour are NP-complete or PSPACE-complete [2, 6, 9], and puz-
zles related to packing like Tetris are NP-complete [5]. Some overviews are given by
Demaine [3] and Demaine and Demaine [4].

In this paper we discuss some new geometric puzzles of the Put-Together type and
analyze their complexity. We also discuss the creation of good instances of certain
geometric puzzles based on set partition.

Gate Puzzles Gate puzzles consist of a board that is a regular square grid of holes
and a number of pieces called gates. Gates consist of three rods, two vertical and one
horizontal, connecting the tops of the vertical rods. The vertical rods are called legs
and have a certain leg distance that allows the gate to be placed on the board. A gate
has a leg distance of 1 if the two legs are in adjacent holes. Furthermore, gates have
a height, taken from a small set of values. To solve a gate puzzle, a given set of gates
must be placed in the board. Every hole of the board must contain exactly one of the
legs, and two gates can only intersect in the vertical projection if they have a different
height, and the intersection is not at the vertical rods of the higher gate. Figure 1
shows an example. On the left, a 5 × 5 grid is shown with eleven normal gates of
heights 2, 3, and 4, and three loose pegs (one-legged gates) of height 1 (which are

Fig. 1 Gate puzzles. Left with two-legged gates, right also with three-legged gates
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below the gates and not visible in the figure). On the right, a variation is shown where
many gates have an extra leg: Two gates have two legs and seven gates have three
legs. Most puzzlers take half an hour to a full hour to solve one of these puzzles. Gate
puzzles were first described by the third author in [12]. In this paper we show that
solving gate puzzles is NP-complete, which we prove by reduction from the strongly
NP-complete problem 3-PARTITION (see for instance [7]).

Two-Layer Puzzles Two-layer puzzles consist of a set of pieces that must be
arranged in two layers, where touching pieces from opposing layers must fit. The
simplest type of such a puzzle consists of 2k pieces of base k × 1, and every 1 × 1
unit has a height 1 or 2. The pieces must be arranged to make a solid k × k × 3 block.
To this end, k of the pieces must be arranged as rows, and the other k pieces must
be arranged upside down and as columns. Other two-layer puzzles can have pieces
that use more than two heights, or pieces that do not have different heights, but use
slanted tops in one of the four orientations [11]. See Fig. 2 for two examples.

A different realization of simplest type of two-layer puzzle is also known as the
16-holes puzzle. It consists of eight flat pieces of 4 × 1, with one, two or three holes.
The objective is to cover the 16 holes of a 4 × 4 grid by placing the pieces on the grid
in two layers, see Fig. 3.

Two-layer puzzles are NP-complete to solve, which we prove by reduction from
Hamiltonian Circuit on graphs of degree three.

Fig. 2 Examples of two-layer puzzles

Fig. 3 The 16-holes puzzle by Wim Zwaan
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Partition Puzzles Partition puzzles are puzzles that are based on the well-known
PARTITION problem: Given a set of positive integers v1, . . . , vn, partition them in two
subsets of equal total value. This problem is NP-complete [7]. The easiest realization
as a geometric puzzle is to consider each integer value vi as a 1×1×vi block and the
puzzle is to pack the blocks in a (very long) box of dimensions 1 × 2 × V/2, where
V = ∑n

i=1 vi .
Another partition problem that is NP-complete is 3-PARTITION, which involves

partitioning a set of 3n positive integers into n sets of three elements each and with
the same subset sum. One puzzle that appears to be directly based on 3-PARTITION

is Kunio Saeki’s Pipes in Pipe, designed for the 18th International Puzzle Party in
1998. It has 21 little cylinders of different lengths that must fit in seven holes of equal
length, see Fig. 4.

Obviously, partitioning a set of integers into three or four subsets of the same total
sum is also NP-complete. A realization of a partition puzzle that uses three subsets is
shown in Fig. 5. In this puzzle, the slant of π/3 and the different ways to deal with
the corners make it a variation on a 3-partition puzzle.

Not only solving puzzles based on partition problems is difficult, the creation of
geometrically good instances of such partition puzzles is also challenging. A good

Fig. 4 Partition puzzle by Kunio Saeki

Fig. 5 Partition puzzle based
on covering an equilateral
triangle with nine pieces of
different lengths and shapes
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geometric puzzle has the property that it is clear whether a particular solution is the
correct solution. Furthermore, it should not be too large, physically. Finally, most
good puzzles have only few pieces but are still very hard. The last property can be
interpreted for partition puzzles that there should be only one solution. The presence
of equal pieces tends to make the solution easier, since it reduces the number of
different potential solutions. Therefore, we require that all pieces are distinct. We
thus restrict our attention to sets of numbers instead of multisets.

The discussion on clearness of the correct solution can be interpreted as follows: if
a set of reals has a solution with two sums of value V , then there should not be a small
ε > 0 such that a different partition into two sets has sums of values V + ε and V − ε.
Here the ratio of V and ε is important. We will only consider the partition problem for
integers. This automatically gives a difference in the subset sums between a correct
partition and non-correct partition of 2. Since a difference of length of 2 mm is clearly
visible, we could take millimeters as units of measurement. But then the sum of a
subset that gives a correct solution is the size of the puzzle in millimeters. We would
like to find the smallest instance of partition, meaning that the sum of all integers is
as small as possible.

We show that for PARTITION, a set of n values exists that has a unique partition
into two subsets of equal sum, and of which the sum is O(n3). Similarly, we show
for k-subsets partition that a set of n values exist that has a unique partition into k

subsets of equal sum, and the sum is O(nk+1). The proofs are constructive: we give
schemes that give instances of the partition problems. In all cases, the k subsets have
equal cardinality.

2 The Complexity of Gate Puzzles

In this section we show that solving gate puzzles is NP-complete. We consider the
simplest form where only two-legged gates occur, and only two heights are used.

Theorem 1 Given a grid of n×m, and nm/2 gates of height 1 or 2, it is NP-complete
to decide if they can be placed on the grid.

Proof Clearly the problem is in NP. To prove NP-hardness we make a reduction
from 3-PARTITION, which is NP-complete in the strong sense [7]. An instance of
3-PARTITION consists of 3N positive integers v1, . . . , v3N , where each integer is be-
tween B/4 and B/2 for some given B , and

∑3N
i=1 vi = NB . The problem is to decide

whether a partition of the 3N integers into N subsets exist such that each of these sub-
sets has sum B . We transform an integer vi into one gate with leg distance 2viN

2 −1
and height 2, and viN

2 − 1 gates of leg distance 1 and height 1. We ask if all gates fit
on a grid of size 2N2B × N , see Fig. 6.

We first show that gates of height 2 only fit horizontally. It is obvious that they do
not fit vertically, but they might fit as the diagonal of a Pythagorean triangle. Note
that any gate of height 2 has leg distance L ≥ N2. It can easily be seen that such a
gate cannot fit diagonally, since L >

√
(L − 1)2 + (N − 1)2, see Fig. 7.

We showed that there are 3N gates that only fit horizontally. There are N rows,
and every row will contain three gates of height 2 in any solution. The gates of height
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Fig. 6 Reduction of 3-PARTITION to gates

Fig. 7 Since gates have large
enough leg distance, they cannot
be placed diagonally

1 are only for making the gate puzzle valid by filling the holes of the whole grid.
They fit under the height 2 gate with which they were created.

It is clear that the gate puzzle has a solution if and only if 3-PARTITION has a solu-
tion. The reduction is polynomial because 3-PARTITION is NP-complete in the strong
sense: even if we write all values in unary notation on the input, the problem is NP-
complete. Therefore, the number of gates obtained after the reduction is polynomial
in the input size. �

Using gates of heights 1, 2, and 3, a similar proof can be constructed on a one-
dimensional grid. We use a single row with 2NB + 2N positions, N gates of height
3 and leg distance 2B + 1, each integer vi gives rise to a gate of height 2 and leg
distance 2vi − 1, and all other gates have height 1 and leg distance 1.

3 The Complexity of Two-Layer Puzzles

For the NP-completeness proof of two-layer puzzles, we choose a version with 2n

pieces of length n. Every piece is a row of elements, each of which has height 1
or 2. An example is shown in Fig. 8. We must place n pieces as rows, and the other
n pieces upside down as columns on top, such that if a position of the bottom, row
layer contains a 1, then the corresponding position of the top, column layer contains
a 2, and vice versa.

We use the following standard terminology, and an easy observation. A graph is
cubic, if each vertex is incident to exactly three edges. A set of edges M ⊆ E is a
perfect matching in a graph G = (V ,E), if each vertex in V is incident to exactly
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Fig. 8 A two-layer piece with
two heights, for a 10 × 10 × 3
block

Fig. 9 The horizontal pieces for
the reduction; gray is height 2
and white is height 1

one edge in M . We say that a set of edges C ⊆ E forms a Hamiltonian circuit, if it
forms a circuit that visits each vertex exactly once. Note that each vertex is incident to
exactly two edges in the Hamiltonian circuit. We also denote the Hamiltonian circuit
by the sequence in which the vertices are visited.

Lemma 1 Let G = (V ,E) be a cubic graph. G has a Hamiltonian circuit, if and
only if E can be partitioned into a set of edges that forms a Hamiltonian circuit, and
a set of edges that forms a perfect matching in G.

Proof The “if” case is trivial. Suppose G has a Hamiltonian circuit. Let M be the
edges not on the Hamiltonian circuit. Each vertex v is incident to three edges in E,
two of which are on the circuit, so one of which belongs to M . So M is a perfect
matching. �

Theorem 2 Given a set of 2n two-layer pieces of length n, it is NP-complete to
decide if they can be placed to form a solid block of n × n × 3.

Proof Clearly, the problem is in NP. To prove NP-hardness, we transform from
HAMILTONIAN CIRCUIT FOR CUBIC GRAPHS [8].

Let G = (V ,E) be a cubic graph, i.e., each vertex in V has exactly three neigh-
bours. Write nG = |V |. Note that nG is even, as G is cubic. Without loss of generality,
assume that nG ≥ 8. Assume V = {v1, . . . , vnG

}.
We build a collection of 4nG + 8 two-layer pieces of length n = 2nG + 4, and

distinguish certain types. The main ones are the H-type and V-type, see Figs. 9
and 10. The construction ensures that all H-type vertices are placed horizontally and
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Fig. 10 The vertical pieces for the reduction, showing a solution for the graph of the cube (on the right,
with the Hamiltonian circuit highlighted). This time, gray is height 1 and white is height 2, complementing
the horizontal pieces of Fig. 9 after permuting them within the groups HC and HM. The vertices of the
cube are numbered 0–7. Two vertices are adjacent if their difference is a power of 2

all V-type pieces are placed vertically, or all H-type pieces are placed vertically, and
all V-type pieces are placed horizontally. As we can turn a solution 90 degrees, we
assume without loss the former.

The H-type and the V-type have subtypes. We have the following pieces per sub-
type:

• Type HF: four pieces with all positions at height 2. HF stands for Horizontal, Full.
• Type HC: nG pieces with all but three positions at height 2. For 1 ≤ i ≤ nG −1, we

have a piece with positions 1, i + 2, and i + 3 at height 1 and all other positions at
height 2. We also have a piece with positions 1, 3, and 2 + nG at height 1, and all
other positions at height 2. HC stands for Horizontal, Circuit: this pieces will be
used to model the Hamiltonian circuit. The last piece models the edge that closes
the circuit.

• Type HM: nG pieces with all but two positions at height 2. For 1 ≤ i ≤ nG/2, we
have two pieces with positions 2 and 2 +nG + i at height 1, and all other positions
at height 2. HM stands for Horizontal, Matching: these pieces model a matching
in G, see Lemma 1.

• Type V1: two pieces with positions 1 until nG (inclusive) at height 2, and all other
positions at height 1.

• Type VE: one piece for each of the 3nG/2 edges in E. If {vi, vj } ∈ E, then we take
a piece with positions i and j at height 2, and all other positions at height 1. VE
stands for Vertical, Edge, as these pieces model the edges of G. (Vertical, Edge, as
these model the edges of G.)

• Type VF: nG/2 + 2 pieces with all positions at height 1. VF stands for Vertical,
Full.
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Claim The given collection of pieces has a solution if and only if G has a Hamil-
tonian circuit.

The claim above shows the correctness, and together with the fact that the col-
lection of pieces can be constructed in polynomial time, given G, this will show the
NP-hardness. The remainder of the proof of the theorem consists of the proof of the
claim.

Suppose vj1, vj2, . . . , vjnG
is a Hamiltonian circuit in G. Let M be the set of edges

in G that do not belong to the circuit, i.e., let M be the matching as given by Lemma 1.
We place the pieces as follows, see Fig. 10.

Pieces of H-type will always be placed horizontally, pieces of V-type vertically. If
we do not state that a piece is reversed, it is placed like its description above.

• One piece of type V1 is placed in the first column.
• The second piece of type V1 is placed in the second column, but reversed, that is,

the height 2 squares are at the intersection with rows nG + 5 until 2nG + 4.
• For 1 ≤ i < nG, the VE-piece which models the edge {vji

, vji+1} is placed in col-
umn i + 2.

• The VE-piece that models the edge {vjnG
, vj1} is placed in column nG + 2.

• The nG/2 VE-pieces that model the edges in M are placed reversed in some arbi-
trary order in the columns nG + 3, . . . ,3nG/2 + 2.

• The VF-pieces are placed in columns 3nG/2 + 3, . . . ,2nG + 4.
• The HF pieces are placed in rows nG + 1, nG + 2, nG + 3, nG + 4.
• The HC-piece with height 1 positions at 1, i +2, i +3 is placed in row ji . Note that

it fits with the vertical pieces: a vertical piece that has a height 2 position in row ji

is either the V1 piece in column 1, or one of the two non-reversed VE-pieces that
model the edges {vji−1, vji

} and {vji
, vji+1}. In each case, the vertical piece has a

height 2 position, if and only if the horizontal piece has a height 1 position at the
intersection point.

• The HC-piece with height 1 positions at 1, 3, and 2 +nG is placed in row jnG
. The

analysis that this fits with the horizontal pieces is similar to the previous case, but
now we ‘wrap around’ at n.

• For each i, 1 ≤ i ≤ nG/2: consider the edge {vk1, vk2} ∈ M whose VE-piece is
placed reversed in column nG + 2 + i. The two HM-pieces with height 1 at posi-
tions 2 and nG + 2 + i are placed in rows 2nG + 4 − k1 and 2nG + 4 − k2. Again,
a simple case analysis shows that the piece has height 1 at a location, if and only
if at this location, the corresponding horizontal piece has height two. We use here
that M is a perfect matching, and thus we use each HM-piece exactly once in this
step.

One can verify that we indeed have a solution for the puzzle.
Suppose the collection of pieces has a solution. Consider an arbitrary piece of type

HF. Without loss of generality, suppose it is placed horizontally. Then, all four pieces
of type HF must be placed horizontally, otherwise we would have a mismatch at the
position where the pieces intersect. Each piece of type HC and HM has at most three
positions of height 1, so it cannot be placed vertically. (Otherwise, it would share a
position with each of the four HF-type pieces, and at least one of these positions it
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would also have height 2.) As all 2nG + 4 pieces of H-type are placed horizontally,
all pieces of V-type are placed vertically.

V1-type pieces have nG positions of height 2. So, if a V1-type piece is placed in
column i, then there are nG H-type pieces with height 1 at position i or 2nG + 5 − i.
For each i ∈ {3, . . . ,2nG + 2}, there are at most six H-type pieces with height 1 at
positions i or 2nG + 5 − i. There are nG H-type pieces with height 1 at position 1,
and nG H-type pieces with height 1 at position 2. Thus, one V1-type piece must be
placed in column 1 or 2nG + 4, and one V1-type piece must be placed in column 2
or 2nG + 3.

Without loss of generality, we suppose one V1-type piece is placed in column 1,
and it is not reversed. Consider the H-type pieces at rows 1, . . . , nG. At their first
position, they meet the height 2 position of the V1-type piece, so they must have
height 1 at their first position, and hence be a HC-type piece. Also, their orientation
cannot be reversed.

For 1 ≤ i < nG, if the HC-piece with height 1 positions at 1, i + 2, i + 3 is in
row j , set vji

= j . Similarly, if the piece with height 1 positions at 1, 3, 2 + nG is in
row j , set vjnG

= j . This gives a Hamiltonian Circuit. Consider a pair of successive
vertices vji

, vji+1 . Note that the HC-type pieces in rows ji and ji+1 have height 1
at their position i + 3. So the V-type piece in column i + 3 must have height 2 at
positions ji and ji+1. It cannot be a V1-type piece, see above. So, we have a VE-type
piece with height 2 at positions ji and ji+1, and hence {vji

, vji+1} ∈ E. A similar
argument shows that {vjnG

, vj1} ∈ E, and hence we have a Hamiltonian circuit. The
finishes the proof the claim, and hence of the theorem. �

4 Designing Partition Puzzles

In this section we consider partition problems for integers. From the introduction
we know that we are mostly interested in instances that are uniquely solvable and
have a small total value. We will concentrate on instances of 2n, or more generally,
kn integers that have a unique partition into 2 subsets (or k subsets, respectively).
Moreover, we want all subsets of the partition to have the same cardinality n. It is
easy to adapt the instances to subsets of different cardinalities, by simply combining
pieces.

Lemma 2 Let S be a set of integers that has a partition into two subsets S1 and S2,
each of total value 1

2 · ∑v∈S v. Then this is the unique partition with this property, if
and only if no proper subset of S1 has equal value to any proper subset of S2.

Proof If two such subsets exist, they can be exchanged and the partition is not unique.
Conversely, let S′

1, S′
2 be a different partition with equal sums. Since S′

1 = (S1 \ (S1 −
S′

1)) ∪ (S′
1 − S1)), the sets S1 − S′

1 and S′
1 − S1 are nonempty proper subsets of S1

and of S2 with equal sums. �

For k ≥ 3, the condition of Lemma 2 applied to pairs of sets, is not sufficient
to guarantee uniqueness. For example, no two proper subsets of S1 = {8, 14, 78},
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S2 = {9, 15, 76}, or S3 = {10, 13, 77} have equal sums, but S′
1 = {9, 13, 78}, S′

2 =
{10, 14, 76}, S′

3 = {8, 15, 77} is a different solution.
We present schemes that generate instances of partition with a set S of 2n or kn

integers that have a strongly unique solution and a polynomial bound on
∑

vi∈S vi .

A Simple Scheme for Partition Suppose we wish to generate a set S of 2n integers
that has a unique partition into two subsets S1 and S2 of cardinality n each.

S1 = {1,2, . . . , n − 1,N}

S2 =
{

1

2
n(n − 1) + 1,

1

2
n(n − 1) + 2, . . . ,

1

2
n(n − 1) + n − 1,

1

2
n(n − 1) + n

}

where N = ∑n
i=1(

1
2n(n−1)+ i)− 1

2n(n−1). Since all integers in S2 are larger than
the sum of the smallest n − 1 integers in S1, and the n-th integer from S1 is larger
than all integers from S2, no proper subset sum from S1 can be equal to any proper
subset sum of S2.

Theorem 3 For any n ≥ 2, an instance of PARTITION exists with 2n values which
has a unique solution in two subsets. Both subsets have n integers, and the subset
sum is (n3 + n)/2.

The obvious lower bound corresponding to the theorem is
∑2n

i=1 i = �(n2). From
Theorem 3, we have an upper bound of O(n3) for the subset sum.

A Simple Scheme for Partition into k Subsets The scheme for partition can easily
be extended to a scheme for partition into k subsets. The scheme gives subset sums
that are polynomial in n, but exponential in k. We write Vi for the sum of the smallest
n − 1 elements in Si .

S1 = {1,2, . . . , n − 1,N1}
S2 = {V1 + 1,V1 + 2, . . . , V1 + n − 1,N2}
S3 = {V2 + 1,V2 + 2, . . . , V2 + n − 1,N3}
. . .

Sk−1 = {Vk−2 + 1,Vk−2 + 2, . . . , Vk−2 + n − 1,Nk−1}
Sk = {Vk−1 + 1,Vk−1 + 2, . . . , Vk−1 + n − 1,Vk−1 + n}

The integers N1, . . . ,Nk−1 are chosen so that all subsets have the same subset sum
as Sk . As before we can argue that N1 is such that only 1, . . . , n− 1 are small enough
to be with N1 and give the right subset sum. Since this fixes S1, we can repeat the
argument by observing that N2 is such that of the remaining integers, only V1 +
1, . . . , V1 + n − 1 are small enough to be with S2 and give the right subset sum.

Theorem 4 For any k ≥ 2 and n ≥ 2, an instance of PARTITION INTO k SUBSETS

exists with kn values which has a unique solution in k subsets. All subsets have n

integers, and the subset sum is �(nk+1), if k is fixed.
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Although we presented a scheme that gives uniquely solvable instances of parti-
tion of cubic size, the scheme is not satisfactory from the puzzle point of view. It
contains an integer that is so large that it is clear which other integers should go in the
same subset (which was the argument for uniqueness). So in this case, uniqueness of
solution does not imply that a puzzle using this scheme will be difficult. Therefore,
we will present another partition scheme and its extension for k subsets that does
not have this problem. We will bound the value of the largest integer in the partition
problem while obtaining the same bound on the subset sum.

An Improved Scheme for Partition To obtain a scheme that does not have the
disadvantage of the simple scheme, choose two sets of integers 1,2, . . . , n and
1,2, . . . , n−1, n+1. Multiply each integer in the first set by n. Multiply each integer
in the second set by n and subtract 1. This way we get S1 and S2:

S1 = {n,2n,3n, . . . , (n − 1)n,n2}
S2 = {n − 1,2n − 1,3n − 1, . . . , (n − 1)n − 1, n2 + n − 1}

Every subset sum from S1 is a multiple of n. No proper subset sum from S2 is a
multiple of n, because each integer is ≡ −1 mod n. Hence, no proper subset sum of
S1 can be equal to any proper subset sum of S2. The sum of all integers in S1 is equal
to the sum of all integers in S2, and is equal to 1

2n(n + 1) · n = (n3 + n2)/2.

Theorem 5 For any n ≥ 2, an instance of PARTITION exists with 2n values which
has a unique solution in two subsets. Both subsets have n integers, all integers have
value �(n) and O(n2), and the subset sum is (n3 + n2)/2.

Again,
∑2n

i=1 i = �(n2) is a lower bound for the subset sum of Theorem 5, and

O(n3) is an upper bound.
It is easy to adapt the scheme to yield a partition in subsets of different cardi-

nalities: we let n be the desired cardinality of the larger subset in the scheme, and
generate S1 and S2. Then we add n − m + 1 values in S2 to get any cardinality m for
the smaller subset, and the partition itself remains unique.

For small values of n, we have computed the uniquely solvable instances of PAR-
TITION with smallest subset sum with the help of a computer, by an enumeration
algorithm. The instances in the following table turned out to be the unique instances
with the given sums, where the two subsets have equal cardinality. (For n = 7 there
are two different smallest instances.) For decompositions into parts of distinct car-
dinalities, there are smaller solutions. For example, {1,3,4,5,6,7} ∪ {2,24} is the
unique solution for an 8-element set, with sums 26, but clearly, this leads to a very
easy puzzle.

One can see in the table that the constructions of Theorems 3 and 5 are not far
from the optimum. Also, the instances for n = 5, n = 6, and n = 7 share certain char-
acteristics with the construction of Theorem 5: they contain arithmetic progressions,
which tends to reduce the number of different subset sums that can be built from a
given set. The two solutions for n = 7 seem to be based on arithmetic progressions
with step lengths 7 and 6, respectively.
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Minimum Simple Improved
n S1 S2 subset scheme scheme

sum 1
2 (n3 + n) 1

2 (n3 + n2)

2 1,4 2,3 5 5 6
3 1,3,9 2,5,6 13 15 18
4 2,7,10,12 3,5,8,15 31 34 40
5 2,7,12,17,22 3,5,10,15,27 60 65 75
6 3,7,10,21,28,35 4,11,14,18,25,32 104 111 126
7 2,9,16,23,30,37,44 5,7,14,21,28,35,51 161 175 196
7 5,11,17,23,29,35,41 1,6,12,18,24,47,53 161 175 196

An Improved Scheme for Partition into k Subsets We now present a scheme to gen-
erate instances of unique partition into 3 subsets, of n integers each, and bounded
integers. Below we will generalize it to larger values of k. Because we wish to avoid
large integers in the instance, we cannot use the inductive argument that was used in
the simple scheme for partition into k subsets to obtain uniqueness. Instead, we use
the following property to guarantee uniqueness.

Strong Uniqueness. If the total sum of the set S is kN , there are only k subsets
of S whose sum is N .

Choose two integers p = n and q = n + 1, and let r = p · q . The sets of integers
in S1, S2, and S3 are:

S1 = {r + q,2r + q, . . . , (n − 1)r + q,nr + q}
S2 = {r + p,2r + p, . . . , (n − 1)r + p,nr + 2p}
S3 = {r,2r, . . . , (n − 1)r, nr + r}

It is easy to see that the three subset sums are the same. Also,
∑

v∈S3
v = ( 1

2n(n +
1) + 1)pq = ( 1

2n(n + 1) + 1)n(n + 1) = �(n4).
To prove uniqueness of the partition, we show strong uniqueness: S1, S2, and

S3 are the only subsets of S = S1 ∪ S2 ∪ S3, with subset sum ( 1
2n(n + 1) + 1)r =

1
3 · ∑vi∈S vi . Let S′ be any subset S, and let S′ have h elements from S1, i elements
from S2, and j elements from S3, where 0 ≤ h, i, j ≤ n. Since elements from S1 are
≡ q mod r , and p and q are relatively prime, h > 0 implies that h = n to obtain a
total sum of S′ that is ≡ 0 mod r . This subset is already S1, and i and j have to be 0,
otherwise the total sum is too large. Similarly, i > 0 implies that S′ must contain all
elements of S2 to be ≡ 0 mod r , and h = 0 and j = 0. Finally, if h = 0 and i = 0, we
need j = n to get a subset S′ of large enough total sum. Hence, S1, S2, and S3 are the
only subsets of S with sum ( 1

2n(n + 1) + 1)r .
To extend this scheme to k sets we need k − 1 integers p1, . . . , pk−1 that are at

least n and pairwise relatively prime. One way to construct such integers is as follows:
Let K be the least common multiple of 1,2, . . . , k − 2. Select p1 in the interval
n ≤ p1 < n + K , relatively prime to K , and set pi+1 = pi + K , for i = 1, . . . , k − 2.
This yields integers pi < n + (k − 1)! that are pairwise relatively prime.
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We let r = ∏k−1
i=1 pi , and construct sets based on r and p1, . . . , pk−1 as above. For

i = 1, . . . , k − 1, we define

Si =
{

r + a1 · r

pi

,2r + a2 · r

pi

, . . . , nr + an · r

pi

}

,

where (a1, a2, . . . , an) is a sequence of small positive integers summing pi . (A dif-
ferent sequence (a1, a2, . . . , an) is chosen for every i.) As before, the last set is just

Sk = {r,2r, . . . , (n − 1)r, (n + 1)r}
The subset sum of each set is 1

2n(n + 1) · r + r = �(nk+1).

Theorem 6 For any k ≥ 2 and n ≥ 2, an instance of PARTITION INTO k SUBSETS

exists with kn values which has a unique solution in k subsets. All subsets have n

integers, all integers have value �(nk−1) and O(nk), and the subset sum is �(nk+1),
if k is fixed.

The construction of Theorem 6 gives an upper bound of O(nk+1) for the subset
sum. We leave it as an interesting open problem to obtain good non-trivial lower
bound for the subset sum.

5 Conclusions and Open Problems

We showed that two new types of geometric puzzles—gate puzzles and two-layer
puzzles—are NP-complete to solve. For puzzles based on partition, we constructed
instances with polynomially bounded values that have unique solutions. The sum of
the values relates to the physical size of the geometric puzzle. Uniqueness tends to
make a puzzle harder, but we saw that a uniquely solvable puzzle may still be easy
(for instance, in the simple scheme for partition). Also the improved scheme has an
issue that is undesirable from the puzzle design perspective: the greedy approach
(always put the largest remaining piece in the set with smallest sum so far) yields the
solution.

The strong uniqueness property for partition in three or more subsets is stronger
than necessary for having a unique solution. It also has the effect of making the puzzle
easier: if the puzzler finds a subset with the right sum, then this subset is certainly
part of the overall solution. So for puzzle design purposes, it is interesting to have
instances of partition into three or more subsets that have a unique solution, but many
subsets with the right summed value.

It appears to be hard to formalize what properties make an instance of partition
good for puzzle design. This is a practical open problem. More theoretically, it would
be interesting to improve upon the O(nk+1) bound on the summed value of instances
with a unique solution.
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