Skip to main content

Advertisement

Log in

Protective Effects of β-Blockers on Bone in Older Adults with Dementia

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Increased β-adrenergic receptor activity has been hypothesized to cause bone loss in those with dementia. We investigated the effect of long-term β-blocker use on rate of bone loss in older adults with dementia. We used a linear mixed-effects model to estimate the relationship between long-term β-blocker use and rate of bone loss in participants from the Health Aging and Body Composition study. Records of 1198 participants were analyzed, 44.7% were men. Among the men, 25.2% had dementia and 20.2% were on β-blockers, while in the women, 22.5% had dementia and 16.6% received β-blockers. In the 135 men with dementia, 23 were taking β-blockers, while 15 of 149 women with dementia were using β-blockers. In men with dementia, β-blocker users had 0.00491 g/cm2 less bone mineral density (BMD) loss per year at the femoral neck (i.e., 0.63% less loss per year) than non-users (p < 0.05). No differences were detected in women with or without dementia and men without dementia. β-blockers may be protective by slowing down bone loss in older men with dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22(3):465–475. https://doi.org/10.1359/jbmr.061113

    Article  PubMed  Google Scholar 

  2. Hebert LE, Weuve J, Scherr PA, Evans DA (2013) Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80(19):1778–1783. https://doi.org/10.1212/WNL.0b013e31828726f5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhang X, Hsu WWQ, Sing CW, Li GHY, Tan KCB, Kung AWC, Wong JSH, Wong IC, Cheung CL (2022) Low bone mineral density with risk of dementia: a prospective cohort study. J Am Med Dir Assoc 23(10):1719.e1719-1719.e1719. https://doi.org/10.1016/j.jamda.2022.07.012

    Article  Google Scholar 

  4. Zhao Y, Shen L, Ji HF (2012) Alzheimer’s disease and risk of hip fracture: a meta-analysis study. Sci World J 2012:872173. https://doi.org/10.1100/2012/872173

    Article  Google Scholar 

  5. Bliuc D, Tran T, Adachi JD, Atkins GJ, Berger C, van den Bergh J, Cappai R, Eisman JA, van Geel T, Geusens P, Goltzman D, Hanley DA, Josse R, Kaiser S, Kovacs CS, Langsetmo L, Prior JC, Nguyen TV, Solomon LB, Stapledon C, Center JR (2021) Cognitive decline is associated with an accelerated rate of bone loss and increased fracture risk in women: a prospective study from the Canadian multicentre osteoporosis study. J Bone Miner Res 36(11):2106–2115. https://doi.org/10.1002/jbmr.4402

    Article  PubMed  Google Scholar 

  6. Friedman SM, Menzies IB, Bukata SV, Mendelson DA, Kates SL (2010) Dementia and hip fractures: development of a pathogenic framework for understanding and studying risk. Geriatr Orthop Surg Rehabil 1(2):52–62. https://doi.org/10.1177/2151458510389463

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bonnet N, Laroche N, Vico L, Dolleans E, Benhamou CL, Courteix D (2006) Dose effects of propranolol on cancellous and cortical bone in ovariectomized adult rats. J Pharmacol Exp Ther 318(3):1118–1127. https://doi.org/10.1124/jpet.106.105437

    Article  CAS  PubMed  Google Scholar 

  8. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434(7032):514–520. https://doi.org/10.1038/nature03398

    Article  CAS  PubMed  Google Scholar 

  9. Kellenberger S, Muller K, Richener H, Bilbe G (1998) Formoterol and isoproterenol induce c-fos gene expression in osteoblast-like cells by activating beta2-adrenergic receptors. Bone 22(5):471–478. https://doi.org/10.1016/s8756-3282(98)00026-x

    Article  CAS  PubMed  Google Scholar 

  10. Moore RE, Smith CK 2nd, Bailey CS, Voelkel EF, Tashjian AH Jr (1993) Characterization of beta-adrenergic receptors on rat and human osteoblast-like cells and demonstration that beta-receptor agonists can stimulate bone resorption in organ culture. Bone Miner 23(3):301–315. https://doi.org/10.1016/s0169-6009(08)80105-5

    Article  CAS  PubMed  Google Scholar 

  11. Pierroz DD, Bonnet N, Bianchi EN, Bouxsein ML, Baldock PA, Rizzoli R, Ferrari SL (2012) Deletion of β-adrenergic receptor 1, 2, or both leads to different bone phenotypes and response to mechanical stimulation. J Bone Miner Res 27(6):1252–1262. https://doi.org/10.1002/jbmr.1594

    Article  CAS  PubMed  Google Scholar 

  12. Sato T, Arai M, Goto S, Togari A (2010) Effects of propranolol on bone metabolism in spontaneously hypertensive rats. J Pharmacol Exp Ther 334(1):99–105. https://doi.org/10.1124/jpet.110.167643

    Article  CAS  PubMed  Google Scholar 

  13. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111(3):305–317. https://doi.org/10.1016/s0092-8674(02)01049-8

    Article  CAS  PubMed  Google Scholar 

  14. Elefteriou F (2018) Impact of the autonomic nervous system on the skeleton. Physiol Rev 98(3):1083–1112. https://doi.org/10.1152/physrev.00014.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lary CW, Hinton AC, Nevola KT, Shireman TI, Motyl KJ, Houseknecht KL, Lucas FL, Hallen S, Zullo AR, Berry SD, Kiel DP (2020) Association of beta blocker use with bone mineral density in the Framingham osteoporosis study: a cross-sectional study. JBMR Plus 4(9):e10388. https://doi.org/10.1002/jbm4.10388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Treyball A, Bergeron AC, Brooks DJ, Langlais AL, Hashmi H, Nagano K, Barlow D, Neilson RJ, Roy TA, Nevola KT, Houseknecht KL, Baron R, Bouxsein ML, Guntur AR, Motyl KJ (2022) Propranolol promotes bone formation and limits resorption through novel mechanisms during anabolic parathyroid hormone treatment in female C57BL/6J Mice. J Bone Miner Res 37(5):954–971. https://doi.org/10.1002/jbmr.4523

    Article  CAS  PubMed  Google Scholar 

  17. Oury F, Yadav VK, Wang Y, Zhou B, Liu XS, Guo XE, Tecott LH, Schutz G, Means AR, Karsenty G (2010) CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons. Genes Dev 24(20):2330–2342. https://doi.org/10.1101/gad.1977210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C, Klemenhagen KC, Tanaka KF, Gingrich JA, Guo XE, Tecott LH, Mann JJ, Hen R, Horvath TL, Karsenty G (2009) A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138(5):976–989. https://doi.org/10.1016/j.cell.2009.06.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Braak H, Del Tredici K (2011) The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 121(2):171–181. https://doi.org/10.1007/s00401-010-0789-4

    Article  PubMed  Google Scholar 

  20. Grinberg LT, Rüb U, Ferretti RE, Nitrini R, Farfel JM, Polichiso L, Gierga K, Jacob-Filho W, Heinsen H (2009) The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset? Neuropathol Appl Neurobiol 35(4):406–416. https://doi.org/10.1111/j.1365-2990.2009.00997.x

    Article  CAS  PubMed  Google Scholar 

  21. Dengler-Crish CM, Elefteriou F (2019) Shared mechanisms: osteoporosis and Alzheimer’s disease? Aging (Albany NY) 11(5):1317–1318. https://doi.org/10.18632/aging.101828

    Article  CAS  PubMed  Google Scholar 

  22. Zhang L, Gai Y, Liu Y, Meng D, Zeng Y, Luo Y, Zhang H, Wang Z, Yang M, Li Y, Liu Y, Lai Y, Yang J, Wu G, Chen Y, Zhu J, Liu S, Yu T, Zeng J, Wang J, Zhu D, Wang X, Lan X, Liu R (2024) Tau induces inflammasome activation and microgliosis through acetylating NLRP3. Clin Transl Med 14(3):e1623. https://doi.org/10.1002/ctm2.1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dengler-Crish CM, Smith MA, Wilson GN (2017) Early evidence of low bone density and decreased serotonergic synthesis in the Dorsal Raphe of a tauopathy model of Alzheimer’s disease. J Alzheimers Dis 55(4):1605–1619. https://doi.org/10.3233/JAD-160658

    Article  CAS  PubMed  Google Scholar 

  24. Levasseur R, Legrand E, Chappard D, Audran M (2005) Central control of bone mass: potential therapeutic implications. Joint Bone Spine 72(6):474–476. https://doi.org/10.1016/j.jbspin.2005.10.002

    Article  PubMed  Google Scholar 

  25. Wiens M, Etminan M, Gill SS, Takkouche B (2006) Effects of antihypertensive drug treatments on fracture outcomes: a meta-analysis of observational studies. J Intern Med 260(4):350–362

    Article  CAS  PubMed  Google Scholar 

  26. Bonnet N, Gadois C, McCloskey E, Lemineur G, Lespessailles E, Courteix D, Benhamou CL (2007) Protective effect of beta blockers in postmenopausal women: influence on fractures, bone density, micro and macroarchitecture. Bone 40(5):1209–1216. https://doi.org/10.1016/j.bone.2007.01.006

    Article  CAS  PubMed  Google Scholar 

  27. Schlienger RG, Kraenzlin ME, Jick SS, Meier CR (2004) Use of beta-blockers and risk of fractures. JAMA 292(11):1326–1332. https://doi.org/10.1001/jama.292.11.1326

    Article  CAS  PubMed  Google Scholar 

  28. Song HJ, Lee J, Kim YJ, Jung SY, Kim HJ, Choi NK, Park BJ (2012) β1 selectivity of β-blockers and reduced risk of fractures in elderly hypertension patients. Bone 51(6):1008–1015. https://doi.org/10.1016/j.bone.2012.08.126

    Article  CAS  PubMed  Google Scholar 

  29. Toulis KA, Hemming K, Stergianos S, Nirantharakumar K, Bilezikian JP (2014) β-Adrenergic receptor antagonists and fracture risk: a meta-analysis of selectivity, gender, and site-specific effects. Osteoporos Int 25(1):121–129. https://doi.org/10.1007/s00198-013-2498-z

    Article  CAS  PubMed  Google Scholar 

  30. Khosla S, Drake MT, Volkman TL, Thicke BS, Achenbach SJ, Atkinson EJ, Joyner MJ, Rosen CJ, Monroe DG, Farr JN (2018) Sympathetic β1-adrenergic signaling contributes to regulation of human bone metabolism. J Clin Invest 128(11):4832–4842. https://doi.org/10.1172/jci122151

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang S, Nguyen ND, Center JR, Eisman JA, Nguyen TV (2011) Association between beta-blocker use and fracture risk: the Dubbo osteoporosis epidemiology study. Bone 48(3):451–455. https://doi.org/10.1016/j.bone.2010.10.170

    Article  CAS  PubMed  Google Scholar 

  32. Yang S, Nguyen ND, Eisman JA, Nguyen TV (2012) Association between beta-blockers and fracture risk: a Bayesian meta-analysis. Bone 51(5):969–974. https://doi.org/10.1016/j.bone.2012.07.013

    Article  CAS  PubMed  Google Scholar 

  33. Farr JN, Charkoudian N, Barnes JN, Monroe DG, McCready LK, Atkinson EJ, Amin S, Melton LJ 3rd, Joyner MJ, Khosla S (2012) Relationship of sympathetic activity to bone microstructure, turnover, and plasma osteopontin levels in women. J Clin Endocrinol Metab 97(11):4219–4227. https://doi.org/10.1210/jc.2012-2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tosun A, Doğru MT, Aydn G, Keleş I, Arslan A, Güneri M, Orkun S, Ebinç H (2011) Does autonomic dysfunction exist in postmenopausal osteoporosis? Am J Phys Med Rehabil 90(12):1012–1019. https://doi.org/10.1097/PHM.0b013e31822dea1a

    Article  PubMed  Google Scholar 

  35. de Vries F, Souverein PC, Cooper C, Leufkens HG, van Staa TP (2007) Use of beta-blockers and the risk of hip/femur fracture in the United Kingdom and The Netherlands. Calcif Tissue Int 80(2):69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nevola KT, Nagarajan A, Hinton AC, Trajanoska K, Formosa MM, Xuereb-Anastasi A, van der Velde N, Stricker BH, Rivadeneira F, Fuggle NR, Westbury LD, Dennison EM, Cooper C, Kiel DP, Motyl KJ, Lary CW (2021) Pharmacogenomic effects of β-blocker use on femoral neck bone mineral density. J Endocr Soc 5(8):bvab092. https://doi.org/10.1210/jendso/bvab092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pasco JA, Henry MJ, Sanders KM, Kotowicz MA, Seeman E, Nicholson GC (2004) Beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong osteoporosis study. J Bone Miner Res 19(1):19–24. https://doi.org/10.1359/jbmr.0301214

    Article  CAS  PubMed  Google Scholar 

  38. Taaffe DR, Cauley JA, Danielson M, Nevitt MC, Lang TF, Bauer DC, Harris TB (2001) Race and sex effects on the association between muscle strength, soft tissue, and bone mineral density in healthy elders: the health, aging, and body composition study. J Bone Miner Res 16(7):1343–1352. https://doi.org/10.1359/jbmr.2001.16.7.1343

    Article  CAS  PubMed  Google Scholar 

  39. Visser M, Fuerst T, Lang T, Salamone L, Harris TB (1999) Validity of fan-beam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass: health, aging, and body composition study–dual-energy X-ray absorptiometry and body composition working group. J Appl Physiol 87(4):1513–1520. https://doi.org/10.1152/jappl.1999.87.4.1513

    Article  CAS  PubMed  Google Scholar 

  40. Rianon N, Ambrose CG, Pervin H, Garcia M, Mama SK, Schwartz AV, Lee B, Harris T (2017) Long-term use of angiotensin-converting enzyme inhibitors protects against bone loss in African–American elderly men. Arch Osteoporos 12(1):94. https://doi.org/10.1007/s11657-017-0387-3

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yaffe K, Falvey C, Harris TB, Newman A, Satterfield S, Koster A, Ayonayon H, Simonsick E (2013) Effect of socioeconomic disparities on incidence of dementia among biracial older adults: prospective study. BMJ 347:f7051. https://doi.org/10.1136/bmj.f7051

    Article  PubMed  PubMed Central  Google Scholar 

  42. Al-Bogami MM, Akanle OA, Aldawood S, Alkhorayef M, Sulieman A, Jawad AS, Mageed RA (2023) Comparison of bone mineral density changes between male and female osteoporosis patients using dual energy X-ray absorptiometry scan. Appl Radiat Isot 194:110624. https://doi.org/10.1016/j.apradiso.2022.110624

    Article  CAS  PubMed  Google Scholar 

  43. Hochberg MC, Greenspan S, Wasnich RD, Miller P, Thompson DE, Ross PD (2002) Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J Clin Endocrinol Metab 87(4):1586–1592. https://doi.org/10.1210/jcem.87.4.8415

    Article  CAS  PubMed  Google Scholar 

  44. Miller PD, Hochberg MC, Wehren LE, Ross PD, Wasnich RD (2005) How useful are measures of BMD and bone turnover? Curr Med Res Opin 21(4):545–554. https://doi.org/10.1185/030079905x41390

    Article  PubMed  Google Scholar 

  45. Tominaga A, Wada K, Okazaki K, Nishi H, Terayama Y, Kato Y (2021) Early clinical effects, safety, and predictors of the effects of romosozumab treatment in osteoporosis patients: one-year study. Osteoporos Int 32(10):1999–2009. https://doi.org/10.1007/s00198-021-05925-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xiao T, Ghatan S, Mooldijk SS, Trajanoska K, Oei L, Gomez MM, Ikram MK, Rivadeneira F, Ikram MA (2023) Association of bone mineral density and dementia: the Rotterdam study. Neurology. https://doi.org/10.1212/wnl.0000000000207220

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhou R, Deng J, Zhang M, Zhou HD, Wang YJ (2011) Association between bone mineral density and the risk of Alzheimer’s disease. J Alzheimers Dis 24(1):101–108. https://doi.org/10.3233/JAD-2010-101467

    Article  PubMed  Google Scholar 

  48. Cheng Y, Ahmed A, Zamrini E, Tsuang DW, Sheriff HM, Zeng-Treitler Q (2020) Alzheimer’s disease and Alzheimer’s disease-related dementias in older African American and white veterans. J Alzheimers Dis 75(1):311–320. https://doi.org/10.3233/jad-191188

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

Catherine Ambrose, Paul Schulz, Florent Elefteriou, Ann Schwartz, and Nahid Rianon contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Khiem Khuc, Abayomi Ogunwale Maria-Bernadette Madel, Florent Elefteriou, and Nahid Rianon. Khiem Khuc, Abayomi Ogunwale, Jude des Bordes, Florent Elefteriou, Paul Schulz, and Nahid Rianon contributed to the first draft of the manuscript and all authors commented on previous versions of the manuscript and contributed to its revisions. All authors read and approved the final manuscript. Nahid Rianon was the guarantor.

Corresponding author

Correspondence to Nahid J. Rianon.

Ethics declarations

Conflict of Interest

Khiem Khuc, Jude des Bordes, Abayomi Ogunwale, Maria-Bernadette Madel, Catherine Ambrose, Paul Schulz, Florent Elefteriou, Ann Schwartz, and Nahid J. Rianon have no conflict of interest to disclose.

Human or Animal Rights and Informed Consent

This study was approved by our institutional Committee for the Protection of Human Subjects (HSC-MS-21-0681). The study used de-identified secondary data. It was exempted from the requirement of informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 147 KB)

Supplementary file2 (PDF 133 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khuc, K., des Bordes, J., Ogunwale, A. et al. Protective Effects of β-Blockers on Bone in Older Adults with Dementia. Calcif Tissue Int (2024). https://doi.org/10.1007/s00223-024-01221-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00223-024-01221-4

Keywords

Navigation