Skip to main content

Advertisement

Log in

Examining Mechanisms for Voltage-Sensitive Calcium Channel-Mediated Secretion Events in Bone Cells

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

In addition to their well-described functions in cell excitability, voltage-sensitive calcium channels (VSCCs) serve a critical role in calcium (Ca2+)-mediated secretion of pleiotropic paracrine and endocrine factors, including those produced in bone. Influx of Ca2+ through VSCCs activates intracellular signaling pathways to modulate a variety of cellular processes that include cell proliferation, differentiation, and bone adaptation in response to mechanical stimuli. Less well understood is the role of VSCCs in the control of bone and calcium homeostasis mediated through secreted factors. In this review, we discuss the various functions of VSCCs in skeletal cells as regulators of Ca2+ dynamics and detail how these channels might control the release of bioactive factors from bone cells. Because VSCCs are druggable, a better understanding of the multiple functions of these channels in the skeleton offers the opportunity for developing new therapies to enhance and maintain bone and to improve systemic health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

ABC:

ATP-binding cassette

AC:

Adenylate cyclase

Akt:

Protein kinase B

ALP:

Alkaline phosphatase

ATP:

Adenosine triphosphate

BMP2:

Bone morphogenetic protein 2

BMSCs:

Bone marrow stromal cells

Ca2+ :

Calcium

CAM:

Calmodulin

CAMK:

Ca2+/calmodulin-dependent protein kinase

cAMP:

Cyclic adenosine monophosphate

CollA1:

Collagen 1α1

COX-2:

Cyclooxygenase-2

CRE:

CAMP-response elements

CREB:

CAMP-response element-binding protein

DAG:

Diacyl glycerol

Dlx5:

Distal-Less Homeobox 5

eNOS:

Endothelial nitric oxide synthase.

ER:

Endoplasmic reticulum

ERK1/2:

Extracellular signal-regulated kinases 1/2

EVs:

Extracellular vesicles

FGF23:

Fibroblast growth factor-23

FZD:

Frizzled

HPLSC:

Human periodontal ligament stem cells

IGF-I:

Insulin-like growth factor I

IP3:

Inositol-1,4,5-triphosphate

LRP5/6:

Lipoprotein receptor-related proteins 5/6

MAPK:

Mitogen-activated protein kinase

MSCF:

Macrophage colony-stimulating factor

MSCs:

Mesenchymal stem cells

mTOR:

Mammalian target of rapamycin

NFATc:

Nuclear factor of activated T cells c

NF-KB:

Nuclear factor kappa B

NO:

Nitric oxide

NSF:

N-Ethylmaleimide-sensitive factor

Ocn:

Osteocalcin

OPG:

Osteoprotegerin

Opn:

Osteopontin

Osx:

Osterix

PDGF-BB:

Platelet-derived growth factor-BB

PGE2 :

Prostaglandin E2

PI3K:

Phosphoinositide 3 kinase

PINP:

Procollagen type I N propeptide

PIP2:

Phosphatidylinositol 4,5-bisphosphate

PKA:

Protein kinase A

PKC:

Protein kinase C

PLA2:

Phospholipase A2

PLC:

Phospholipase C

PLN:

Perlecan

RANKL:

Receptor activator of nuclear factor-κB ligand

RBPs:

RIM-binding proteins

RIMs:

Rab3-interacting molecules

Runx2:

Runt-related transcription factor 2

SNAP:

Soluble NSF attachment protein

SNARE:

SNAP receptor

SYT:

Synaptotagmin

TGF-β:

Transcription growth factor superfamily β

TNFα:

Tumor necrosis factor-alpha

tSNAREs:

Target membrane SNAREs

VSCC:

Voltage-sensitive calcium channels

vSNAREs:

Vesicle membrane SNAREs

Wnt:

Wingless-related integration site

References

  1. Burr DB, Allen MR (2019) Basic and applied bone biology. Academic Press, Cambridge

    Google Scholar 

  2. Rosen CJ, American Society for Bone and Mineral Research (2013) Primer on the metabolic bone diseases and disorders of mineral metabolism. Wiley, Ames

    Book  Google Scholar 

  3. Eriksen EF (2010) Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord 11:219–227

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xiao W, Wang Y, Pacios S, Li S, Graves DT (2016) Cellular and molecular aspects of bone remodeling. Tooth Mov 18:9–16

    Article  Google Scholar 

  5. Ma YL, Cain RL, Halladay DL, Yang X, Zeng Q, Miles RR, Chandrasekhar S, Martin TJ, Onyia JE (2001) Catabolic effects of continuous human PTH (1–38) in vivo is associated with sustained stimulation of RANKL and inhibition of osteoprotegerin and gene-associated bone formation. Endocrinology 142:4047–4054

    Article  CAS  PubMed  Google Scholar 

  6. Huang JC, Sakata T, Pfleger LL, Bencsik M, Halloran BP, Bikle DD, Nissenson RA (2004) PTH differentially regulates expression of RANKL and OPG. J Bone Miner Res 19:235–244

    Article  CAS  PubMed  Google Scholar 

  7. Hofbauer LC, Gori F, Riggs BL, Lacey DL, Dunstan CR, Spelsberg TC, Khosla S (1999) Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocorticoid-induced osteoporosis. Endocrinology 140:4382–4389

    Article  CAS  PubMed  Google Scholar 

  8. Kohli SS, Kohli VS (2011) Role of RANKL-RANK/osteoprotegerin molecular complex in bone remodeling and its immunopathologic implications. Indian J Endocrinol Metabol 15:175–181

    Article  CAS  Google Scholar 

  9. Thompson WR, Rubin CT, Rubin J (2012) Mechanical regulation of signaling pathways in bone. Gene 503:179–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wright CS, Robling AG, Farach-Carson MC, Thompson WR (2021) Skeletal functions of voltage sensitive calcium channels. Curr Osteoporos Rep 19:206–221

    Article  PubMed  PubMed Central  Google Scholar 

  11. Du Y, Zhang L, Wang Z, Zhao X, Zou J (2021) Endocrine regulation of extra-skeletal organs by bone-derived secreted protein and the effect of mechanical stimulation. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2021.778015

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yavropoulou MP, Yovos JG (2008) Osteoclastogenesis–current knowledge and future perspectives. J Musculoskelet Neuronal Interact 8:204–216

    CAS  PubMed  Google Scholar 

  13. Khosla S (2001) Minireview: the OPG/RANKL/RANK system. Endocrinology 142:5050–5055

    Article  CAS  PubMed  Google Scholar 

  14. Poole KE, Van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Löwik CW, Reeve J (2005) Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 19:1842–1844

    Article  CAS  PubMed  Google Scholar 

  15. Semenov M, Tamai K, He X (2005) SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 280:26770–26775

    Article  CAS  PubMed  Google Scholar 

  16. Kramer I, Loots GG, Studer A, Keller H, Kneissel M (2010) Parathyroid hormone (PTH)-induced bone gain is blunted in SOST overexpressing and deficient mice. J Bone Miner Res 25:178–189

    Article  CAS  PubMed  Google Scholar 

  17. Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D, Kurahara C, Gao Y, Cao J, Gong J, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Morony S, Sarosi I, Kostenuik PJ, Lacey DL, Simonet WS, Ke HZ, Paszty C (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23:860–869

    Article  PubMed  Google Scholar 

  18. Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42:606–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26:229–238

    Article  CAS  PubMed  Google Scholar 

  20. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435

    Article  CAS  PubMed  Google Scholar 

  21. Wei J, Ferron M, Clarke CJ, Hannun YA, Jiang H, Blaner WS, Karsenty G (2014) Bone-specific insulin resistance disrupts whole-body glucose homeostasis via decreased osteocalcin activation. J Clin Investig 124:1781–1793

    Article  CAS  PubMed Central  Google Scholar 

  22. Miyazono K, Kamiya Y, Morikawa M (2010) Bone morphogenetic protein receptors and signal transduction. J Biochem 147:35–51

    Article  CAS  PubMed  Google Scholar 

  23. Mundy GR (1996) Regulation of bone formation by bone morphogenetic proteins and other growth factors. Clin Orthop Relat Res 1976–2007(324):24–27

    Article  Google Scholar 

  24. Katagiri T, Watabe T (2016) Bone morphogenetic proteins. Cold Spring Harb Perspect Biol 8:a021899

    Article  PubMed  PubMed Central  Google Scholar 

  25. Han Y, You X, Xing W, Zhang Z, Zou W (2018) Paracrine and endocrine actions of bone—the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res 6:1–11

    Article  CAS  Google Scholar 

  26. Dolphin AC, Lee A (2020) Presynaptic calcium channels: specialized control of synaptic neurotransmitter release. Nat Rev Neurosci 21:213–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bers DM (2000) Calcium fluxes involved in control of cardiac myocyte contraction. Circ Res 87:275–281

    Article  CAS  PubMed  Google Scholar 

  28. Stojilković S, Izumi S, Catt K (1988) Participation of voltage-sensitive calcium channels in pituitary hormone release. J Biol Chem 263:13054–13061

    Article  PubMed  Google Scholar 

  29. Nagayama T, Matsumoto T, Kuwakubo F, Fukushima Y, Yoshida M, Suzuki-Kusaba M, Hisa H, Kimura T, Satoh S (1999) Role of calcium channels in catecholamine secretion in the rat adrenal gland. J Physiol 520:503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Braun M, Ramracheya R, Bengtsson M, Zhang Q, Karanauskaite J, Partridge C, Johnson PR, Rorsman P (2008) Voltage-gated ion channels in human pancreatic β-cells: electrophysiological characterization and role in insulin secretion. Diabetes 57:1618–1628

    Article  CAS  PubMed  Google Scholar 

  31. Ye Y, Barghouth M, Luan C, Kazim A, Zhou Y, Eliasson L, Zhang E, Hansson O, Thevenin T, Renström E (2020) The TCF7L2-dependent high-voltage activated calcium channel subunit α2δ-1 controls calcium signaling in rodent pancreatic beta-cells. Mol Cell Endocrinol 502:110673

    Article  CAS  PubMed  Google Scholar 

  32. Yz T, Fei Dd, Xn He, Dai Jm Xu, Xy RX, Jj Wu, Li B (2019) L-type voltage-gated calcium channels in stem cells and tissue engineering. Cell Prolif 52:e12623

    Article  Google Scholar 

  33. Li J, Duncan RL, Burr DB, Gattone VH, Turner CH (2003) Parathyroid hormone enhances mechanically induced bone formation, possibly involving L-type voltage-sensitive calcium channels. Endocrinology 144:1226–1233

    Article  CAS  PubMed  Google Scholar 

  34. Duriez J, Flautre B, Blary MC, Hardouin P (1993) Effects of the calcium channel blocker nifedipine on epiphyseal growth plate and bone turnover: a study in rabbit. Calcif Tissue Int 52:120–124

    Article  CAS  PubMed  Google Scholar 

  35. Li J, Duncan RL, Burr DB, Turner CH (2002) L-type calcium channels mediate mechanically induced bone formation in vivo. J Bone Miner Res 17:1795–1800

    Article  CAS  PubMed  Google Scholar 

  36. Brown GN, Leong PL, Guo XE (2016) T-type voltage-sensitive calcium channels mediate mechanically-induced intracellular calcium oscillations in osteocytes by regulating endoplasmic reticulum calcium dynamics. Bone 88:56–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Genetos DC, Geist DJ, Liu D, Donahue HJ, Duncan RL (2005) Fluid shear-induced ATP secretion mediates prostaglandin release in MC3T3-E1 osteoblasts. J Bone Miner Res 20:41–49

    Article  CAS  PubMed  Google Scholar 

  38. Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    Article  CAS  PubMed  Google Scholar 

  39. Dolphin AC (2016) Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J Physiol 594:5369–5390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Thompson WR, Majid AS, Czymmek KJ, Ruff AL, García J, Duncan RL, Farach-Carson MC (2011) Association of the α2δ1 subunit with Cav3.2 enhances membrane expression and regulates mechanically induced ATP release in MLO-Y4 osteocytes. J Bone Miner Res 26:2125–2139

    Article  CAS  PubMed  Google Scholar 

  41. De Jongh KS, Warner C, Catterall WA (1990) Subunits of purified calcium channels. Alpha 2 and delta are encoded by the same gene. J Biol Chem 265:14738–14741

    Article  PubMed  Google Scholar 

  42. Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    Article  CAS  PubMed  Google Scholar 

  43. Qin L, Liu W, Cao H, Xiao G (2020) Molecular mechanosensors in osteocytes. Bone Res 8:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX (2005) Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 16:3100–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Batra N, Burra S, Siller-Jackson AJ, Gu S, Xia X, Weber GF, DeSimone D, Bonewald LF, Lafer EM, Sprague E (2012) Mechanical stress-activated integrin α5β1 induces opening of connexin 43 hemichannels. Proc Natl Acad Sci 109:3359–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cabahug-Zuckerman P, Stout RF Jr, Majeska RJ, Thi MM, Spray DC, Weinbaum S, Schaffler MB (2018) Potential role for a specialized β3 integrin-based structure on osteocyte processes in bone mechanosensation. J Orthop Res 36:642–652

    CAS  PubMed  Google Scholar 

  47. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun W, Chi S, Li Y, Ling S, Tan Y, Xu Y, Jiang F, Li J, Liu C, Zhong G (2019) The mechanosensitive Piezo1 channel is required for bone formation. Elife 8:e47454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Robling AG, Turner CH (2009) Mechanical signaling for bone modeling and remodeling. Crit Rev Eukaryot Gene Expr 19:319–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Davidson RM, Tatakis DW, Auerbach AL (1990) Multiple forms of mechanosensitive ion channels in osteoblast-like cells. Pflugers Arch 416:646–651

    Article  CAS  PubMed  Google Scholar 

  51. Shao Y, Alicknavitch M, Farach-Carson MC (2005) Expression of voltage sensitive calcium channel (VSCC) L-type Cav1.2 (alpha1C) and T-type Cav3.2 (alpha1H) subunits during mouse bone development. Dev Dyn 234:54–62

    Article  CAS  PubMed  Google Scholar 

  52. Rampe D, Michael Kane J (1994) Activators of voltage-dependent L-type calcium channels. Drug Dev Res 33:344–363

    Article  CAS  Google Scholar 

  53. Boczek NJ, Miller EM, Ye D, Nesterenko VV, Tester DJ, Antzelevitch C, Czosek RJ, Ackerman MJ, Ware SM (2015) Novel Timothy syndrome mutation leading to increase in CACNA1C window current. Heart Rhythm 12:211–219

    Article  PubMed  Google Scholar 

  54. Zhu X, Bai W, Zheng H (2021) Twelve years of GWAS discoveries for osteoporosis and related traits: advances, challenges and applications. Bone Res 9:1–19

    Article  Google Scholar 

  55. Wen L, Wang Y, Wang H, Kong L, Zhang L, Chen X, Ding Y (2012) L-type calcium channels play a crucial role in the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 424:439–445

    Article  CAS  PubMed  Google Scholar 

  56. Felix R (2005) Molecular regulation of voltage-gated Ca2+ channels. J Recept Signal Transduct Res 25:57–71

    Article  CAS  PubMed  Google Scholar 

  57. Caffrey JM, Farach-Carson MC (1989) Vitamin D3 metabolites modulate dihydropyridine-sensitive calcium currents in clonal rat osteosarcoma cells. J Biol Chem 264:20265–20274

    Article  CAS  PubMed  Google Scholar 

  58. Li W, Farach-Carson MC (2001) Parathyroid hormone-stimulated resorption in calvaria cultured in serum-free medium is enhanced by the calcium-mobilizing activity of 1,25-dihydroxyvitamin D(3). Bone 29:231–235

    Article  CAS  PubMed  Google Scholar 

  59. Kito H, Ohya S (2021) Role of K(+) and Ca(2+)-permeable channels in osteoblast functions. Int J Mol Sci 22:10459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Martinac B, Adler J, Kung C (1990) Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348:261–263

    Article  CAS  PubMed  Google Scholar 

  61. Kloda A, Martinac B (2001) Molecular identification of a mechanosensitive channel in archaea. Biophys J 80:229–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cox CD, Bae C, Ziegler L, Hartley S, Nikolova-Krstevski V, Rohde PR, Ng C-A, Sachs F, Gottlieb PA, Martinac B (2016) Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat Commun 7:10366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li X, Han L, Nookaew I, Mannen E, Silva MJ, Almeida M, Xiong J (2019) Stimulation of Piezo1 by mechanical signals promotes bone anabolism. Elife 8:e49631

    Article  PubMed  PubMed Central  Google Scholar 

  64. Duncan RL, Hruska KA, Misler S (1992) Parathyroid hormone activation of stretch-activated cation channels in osteosarcoma cells (UMR-106.01). FEBS Lett 307:219–223

    Article  CAS  PubMed  Google Scholar 

  65. Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202

    Article  CAS  PubMed  Google Scholar 

  66. You LD, Weinbaum S, Cowin SC, Schaffler MB (2004) Ultrastructure of the osteocyte process and its pericellular matrix. Anat Rec A 278:505–513

    Article  Google Scholar 

  67. Thompson WR, Modla S, Grindel BJ, Czymmek KJ, Kirn-Safran CB, Wang L, Duncan RL, Farach-Carson MC (2011) Perlecan/Hspg2 deficiency alters the pericellular space of the lacunocanalicular system surrounding osteocytic processes in cortical bone. J Bone Miner Res 26:618–629

    Article  CAS  PubMed  Google Scholar 

  68. Wang B, Lai X, Price C, Thompson WR, Li W, Quabili TR, Tseng WJ, Liu XS, Zhang H, Pan J, Kirn-Safran CB, Farach-Carson MC, Wang L (2014) Perlecan-containing pericellular matrix regulates solute transport and mechanosensing within the osteocyte lacunar-canalicular system. J Bone Miner Res 29:878–891

    Article  CAS  PubMed  Google Scholar 

  69. Reyes Fernandez PC, Wright CS, Masterson AN, Yi X, Tellman TV, Bonteanu A, Rust K, Noonan ML, White KE, Lewis KJ (2022) Gabapentin disrupts binding of perlecan to the α2δ1 voltage sensitive calcium channel subunit and impairs skeletal mechanosensation. Biomolecules 12:1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hecht E, Liedert A, Ignatius A, Mizaikoff B, Kranz C (2013) Local detection of mechanically induced ATP release from bone cells with ATP microbiosensors. Biosens Bioelectron 44:27–33

    Article  CAS  PubMed  Google Scholar 

  71. Li J, Liu D, Ke HZ, Duncan RL, Turner CH (2005) The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem 280:42952–42959

    Article  CAS  PubMed  Google Scholar 

  72. Katz S, Ayala V, Santillan G, Boland R (2011) Activation of the PI3K/Akt signaling pathway through P2Y(2) receptors by extracellular ATP is involved in osteoblastic cell proliferation. Arch Biochem Biophys 513:144–152

    Article  CAS  PubMed  Google Scholar 

  73. Katz S, Boland R, Santillan G (2008) Purinergic (ATP) signaling stimulates JNK1 but not JNK2 MAPK in osteoblast-like cells: contribution of intracellular Ca2+ release, stress activated and L-voltage-dependent calcium influx, PKC and Src kinases. Arch Biochem Biophys 477:244–252

    Article  CAS  PubMed  Google Scholar 

  74. Duncan RL, Turner CH (1995) Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 57:344–358

    Article  CAS  PubMed  Google Scholar 

  75. Halls ML, Cooper DM (2011) Regulation by Ca2+-signaling pathways of adenylyl cyclases. Cold Spring Harb Perspect Biol 3:a004143

    Article  PubMed  PubMed Central  Google Scholar 

  76. Liu D, Genetos DC, Shao Y, Geist DJ, Li J, Ke HZ, Turner CH, Duncan RL (2008) Activation of extracellular-signal regulated kinase (ERK1/2) by fluid shear is Ca(2+)- and ATP-dependent in MC3T3-E1 osteoblasts. Bone 42:644–652

    Article  CAS  PubMed  Google Scholar 

  77. Katz S, Boland R, Santillan G (2006) Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATP in osteoblasts: involvement of mechanical stress-activated calcium influx, PKC and SRC activation. Int J Biochem Cell Biol 38:2082–2091

    Article  CAS  PubMed  Google Scholar 

  78. You J, Reilly GC, Zhen X, Yellowley CE, Chen Q, Donahue HJ, Jacobs CR (2001) Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J Biol Chem 276:13365–13371

    Article  CAS  PubMed  Google Scholar 

  79. Walker LM, Publicover SJ, Preston MR, Said Ahmed MA, El Haj AJ (2000) Calcium-channel activation and matrix protein upregulation in bone cells in response to mechanical strain. J Cell Biochem 79:648–661

    Article  CAS  PubMed  Google Scholar 

  80. Yu L, Ma X, Sun J, Tong J, Shi L, Sun L, Zhang J (2017) Fluid shear stress induces osteoblast differentiation and arrests the cell cycle at the G0 phase via the ERK1/2 pathway. Mol Med Rep 16:8699–8708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tassinary JA, Lunardelli A, Basso BS, Stulp S, Pozzobon A, Pedrazza L, Bartrons R, Ventura F, Rosa JL, Melo DA, Nunes FB, Donadio MV, Oliveira JR (2015) Therapeutic ultrasound stimulates MC3T3-E1 cell proliferation through the activation of NF-kappaB1, p38alpha, and mTOR. Lasers Surg Med 47:765–772

    Article  PubMed  Google Scholar 

  82. Kao RS, Abbott MJ, Louie A, O’Carroll D, Lu W, Nissenson R (2013) Constitutive protein kinase A activity in osteocytes and late osteoblasts produces an anabolic effect on bone. Bone 55:277–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dong J, Xu X, Zhang Q, Yuan Z, Tan B (2020) The PI3K/AKT pathway promotes fracture healing through its crosstalk with Wnt/beta-catenin. Exp Cell Res 394:112137

    Article  CAS  PubMed  Google Scholar 

  84. Fang D, Hawke D, Zheng Y, Xia Y, Meisenhelder J, Nika H, Mills GB, Kobayashi R, Hunter T, Lu Z (2007) Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem 282:11221–11229

    Article  CAS  PubMed  Google Scholar 

  85. Sunters A, Armstrong VJ, Zaman G, Kypta RM, Kawano Y, Lanyon LE, Price JS (2010) Mechano-transduction in osteoblastic cells involves strain-regulated estrogen receptor alpha-mediated control of insulin-like growth factor (IGF) I receptor sensitivity to Ambient IGF, leading to phosphatidylinositol 3-kinase/AKT-dependent Wnt/LRP5 receptor-independent activation of beta-catenin signaling. J Biol Chem 285:8743–8758

    Article  CAS  PubMed  Google Scholar 

  86. Choi YH, Jeong HM, Jin YH, Li H, Yeo CY, Lee KY (2011) Akt phosphorylates and regulates the osteogenic activity of Osterix. Biochem Biophys Res Commun 411:637–641

    Article  CAS  PubMed  Google Scholar 

  87. Mandal CC, Drissi H, Choudhury GG, Ghosh-Choudhury N (2010) Integration of phosphatidylinositol 3-kinase, Akt kinase, and Smad signaling pathway in BMP-2-induced osterix expression. Calcif Tissue Int 87:533–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yoshida K, Oida H, Kobayashi T, Maruyama T, Tanaka M, Katayama T, Yamaguchi K, Segi E, Tsuboyama T, Matsushita M, Ito K, Ito Y, Sugimoto Y, Ushikubi F, Ohuchida S, Kondo K, Nakamura T, Narumiya S (2002) Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc Natl Acad Sci USA 99:4580–4585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li W, Duncan RL, Karin NJ, Farach-Carson MC (1997) 1,25 (OH)2D3 enhances PTH-induced Ca2+ transients in preosteoblasts by activating L-type Ca2+ channels. Am J Physiol 273:E599-605

    CAS  PubMed  Google Scholar 

  90. Sakuma Y, Li Z, Pilbeam CC, Alander CB, Chikazu D, Kawaguchi H, Raisz LG (2004) Stimulation of cAMP production and cyclooxygenase-2 by prostaglandin E(2) and selective prostaglandin receptor agonists in murine osteoblastic cells. Bone 34:827–834

    Article  CAS  PubMed  Google Scholar 

  91. Wu X, Zeng LH, Taniguchi T, Xie QM (2007) Activation of PKA and phosphorylation of sodium-dependent vitamin C transporter 2 by prostaglandin E2 promote osteoblast-like differentiation in MC3T3-E1 cells. Cell Death Differ 14:1792–1801

    Article  PubMed  Google Scholar 

  92. Minamizaki T, Yoshiko Y, Kozai K, Aubin JE, Maeda N (2009) EP2 and EP4 receptors differentially mediate MAPK pathways underlying anabolic actions of prostaglandin E2 on bone formation in rat calvaria cell cultures. Bone 44:1177–1185

    Article  CAS  PubMed  Google Scholar 

  93. Kitase Y, Barragan L, Qing H, Kondoh S, Jiang JX, Johnson ML, Bonewald LF (2010) Mechanical induction of PGE2 in osteocytes blocks glucocorticoid-induced apoptosis through both the beta-catenin and PKA pathways. J Bone Miner Res 25:2657–2668

    Article  PubMed  PubMed Central  Google Scholar 

  94. Forwood MR (1996) Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J Bone Miner Res 11:1688–1693

    Article  CAS  PubMed  Google Scholar 

  95. Klein-Nulend J, van Oers RF, Bakker AD, Bacabac RG (2014) Nitric oxide signaling in mechanical adaptation of bone. Osteoporos Int 25:1427–1437

    CAS  PubMed  Google Scholar 

  96. Juffer P, Jaspers RT, Lips P, Bakker AD, Klein-Nulend J (2012) Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes. Am J Physiol Endocrinol Metab 302:E389-395

    Article  CAS  PubMed  Google Scholar 

  97. Santos A, Bakker AD, Zandieh-Doulabi B, Semeins CM, Klein-Nulend J (2009) Pulsating fluid flow modulates gene expression of proteins involved in Wnt signaling pathways in osteocytes. J Orthop Res 27:1280–1287

    Article  CAS  PubMed  Google Scholar 

  98. Wasserman E, Webster D, Kuhn G, Attar-Namdar M, Muller R, Bab I (2013) Differential load-regulated global gene expression in mouse trabecular osteocytes. Bone 53:14–23

    Article  CAS  PubMed  Google Scholar 

  99. Hong AR, Kim K, Lee JY, Yang JY, Kim JH, Shin CS, Kim SW (2020) Transformation of mature osteoblasts into bone lining cells and RNA sequencing-based transcriptome profiling of mouse bone during mechanical unloading. Endocrinol Metab 35:456–469

    Article  CAS  Google Scholar 

  100. Fuller-Bicer GA, Varadi G, Koch SE, Ishii M, Bodi I, Kadeer N, Muth JN, Mikala G, Petrashevskaya NN, Jordan MA (2009) Targeted disruption of the voltage-dependent calcium channel α2/δ-1-subunit. Am J Physiol-Heart Circ Physiol 297:H117–H124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Patel R, Bauer CS, Nieto-Rostro M, Margas W, Ferron L, Chaggar K, Crews K, Ramirez JD, Bennett DL, Schwartz A (2013) α2δ-1 gene deletion affects somatosensory neuron function and delays mechanical hypersensitivity in response to peripheral nerve damage. J Neurosci 33:16412–16426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Garcia K, Nabhani T, Garcia J (2008) The calcium channel alpha2/delta1 subunit is involved in extracellular signalling. J Physiol 586:727–738

    Article  CAS  PubMed  Google Scholar 

  103. Eroglu C, Allen NJ, Susman MW, O’Rourke NA, Park CY, Ozkan E, Chakraborty C, Mulinyawe SB, Annis DS, Huberman AD, Green EM, Lawler J, Dolmetsch R, Garcia KC, Smith SJ, Luo ZD, Rosenthal A, Mosher DF, Barres BA (2009) Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139:380–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dolphin AC (2018) Voltage-gated calcium channel alpha 2delta subunits: an assessment of proposed novel roles. F1000Res 7:1830

    Article  Google Scholar 

  105. Kadurin I, Rothwell SW, Lana B, Nieto-Rostro M, Dolphin ACJS (2017) LRP1 influences trafficking of N-type calcium channels via interaction with the auxiliary α2δ-1 subunit. Sci Rep 7:1–17

    Article  Google Scholar 

  106. Eroglu C, Allen NJ, Susman MW, O’Rourke NA, Park CY, Özkan E, Chakraborty C, Mulinyawe SB, Annis DS, Huberman ADJC (2009) Gabapentin receptor α2δ-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139:380–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Risher WC, Kim N, Koh S, Choi J-E, Mitev P, Spence EF, Pilaz L-J, Wang D, Feng G, Silver DLJJ (2018) Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1. J Cell Biol 217:3747–3765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen J, Li L, Chen S-R, Chen H, Xie J-D, Sirrieh RE, MacLean DM, Zhang Y, Zhou M-H, Jayaraman VJCr, (2018) The α2δ-1-NMDA receptor complex is critically involved in neuropathic pain development and gabapentin therapeutic actions. Cell Rep 22:2307–2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Brockhaus J, Schreitmuller M, Repetto D, Klatt O, Reissner C, Elmslie K, Heine M, Missler M (2018) Alpha-neurexins together with alpha2delta-1 auxiliary subunits regulate Ca(2+) influx through Cav2.1 channels. J Neurosci 38:8277–8294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gee NS, Brown JP, Dissanayake VU, Offord J, Thurlow R, Woodruff GN (1996) The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. J Biol Chem 271:5768–5776

    Article  CAS  PubMed  Google Scholar 

  111. Boileau C, Martel-Pelletier J, Brunet J, Schrier D, Flory C, Boily M, Pelletier J (2006) PD-0200347, an α2δ ligand of the voltage gated calcium channel, inhibits in vivo activation of the Erk1/2 pathway in osteoarthritic chondrocytes: a PKCα dependent effect. Ann Rheum Dis 65:573–580

    Article  CAS  PubMed  Google Scholar 

  112. Rubin C, Lanyon L (1984) Regulation of bone formation by applied dynamic loads. J Bone Jt Surg Am 66:397–402

    Article  CAS  Google Scholar 

  113. Wolff J (2012) The law of bone remodelling. Springer, New York

    Google Scholar 

  114. Man J, Graham T, Squires-Donelly G, Laslett AL (2022) The effects of microgravity on bone structure and function. NPJ Micrograv 8:1–15

    Article  Google Scholar 

  115. Sun Z, Cao X, Zhang Z, Hu Z, Zhang L, Wang H, Zhou H, Li D, Zhang S, Xie M (2015) Simulated microgravity inhibits L-type calcium channel currents partially by the up-regulation of miR-103 in MC3T3-E1 osteoblasts. Sci Rep 5:1–12

    Google Scholar 

  116. Sun Z, Li Y, Zhou H, Cai M, Liu J, Gao S, Yang J, Tong L, Wang J, Zhou S (2019) Simulated microgravity reduces intracellular-free calcium concentration by inhibiting calcium channels in primary mouse osteoblasts. J Cell Biochem 120:4009–4020

    Article  CAS  PubMed  Google Scholar 

  117. Salingcarnboriboon R, Tsuji K, Komori T, Nakashima K, Ezura Y, Noda M (2006) Runx2 is a target of mechanical unloading to alter osteoblastic activity and bone formation in vivo. Endocrinology 147:2296–2305

    Article  CAS  PubMed  Google Scholar 

  118. Yang X, Sun L-W, Wang X-N, Fan Y-B (2010) Effects of simulated microgravity on the mechanosensibility of osteocytes due to fluid shear stress. Bone 47:S436–S437

    Article  Google Scholar 

  119. Jung H, Akkus O (2020) Diffuse microdamage in bone activates anabolic response by osteoblasts via involvement of voltage-gated calcium channels. J Bone Miner Metab 38:151–160

    Article  CAS  PubMed  Google Scholar 

  120. Jung H, Best M, Akkus O (2015) Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via L-type and T-type voltage-gated calcium channels. Bone 76:88–96

    Article  PubMed  Google Scholar 

  121. Liu L, Li H, Cui Y, Li R, Meng F, Ye Z, Zhang X (2017) Calcium channel opening rather than the release of ATP causes the apoptosis of osteoblasts induced by overloaded mechanical stimulation. Cell Physiol Biochem 42:441–454

    Article  CAS  PubMed  Google Scholar 

  122. Koide M, Kinugawa S, Ninomiya T, Mizoguchi T, Yamashita T, Maeda K, Yasuda H, Kobayashi Y, Nakamura H, Takahashi N (2009) Diphenylhydantoin inhibits osteoclast differentiation and function through suppression of NFATc1 signaling. J Bone Miner Res 24:1469–1480

    Article  CAS  PubMed  Google Scholar 

  123. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J-i (2002) Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3:889–901

    Article  CAS  PubMed  Google Scholar 

  124. Noh ALSM, Park H, Zheng T, Ha H-I, Yim M (2011) L-type Ca2+ channel agonist inhibits RANKL-induced osteoclast formation via NFATc1 down-regulation. Life Sci 89:159–164

    Article  CAS  PubMed  Google Scholar 

  125. Kang JY, Kang N, Yang Y-M, Hong JH, Shin DM (2020) The role of Ca2+-NFATc1 signaling and its modulation on osteoclastogenesis. Int J Mol Sci 21:3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bergh JJ, Xu Y, Farach-Carson MC (2004) Osteoprotegerin expression and secretion are regulated by calcium influx through the L-type voltage-sensitive calcium channel. Endocrinology 145:426–436

    Article  CAS  PubMed  Google Scholar 

  127. Sato K, Suematsu A, Nakashima T, Takemoto-Kimura S, Aoki K, Morishita Y, Asahara H, Ohya K, Yamaguchi A, Takai T (2006) Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat Med 12:1410–1416

    Article  CAS  PubMed  Google Scholar 

  128. Guggino SE, Lajeunesse D, Wagner JA, Snyder SH (1989) Bone remodeling signaled by a dihydropyridine-and phenylalkylamine-sensitive calcium channel. Proc Natl Acad Sci 86:2957–2960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cao C, Ren Y, Barnett AS, Mirando AJ, Rouse D, Mun SH, Park-Min K-H, McNulty AL, Guilak F, Karner CM (2017) Increased Ca2+ signaling through CaV12 promotes bone formation and prevents estrogen deficiency–induced bone loss. JCI Insight. https://doi.org/10.1172/jci.insight.95512

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lee MN, Hwang H-S, Oh S-H, Roshanzadeh A, Kim J-W, Song JH, Kim E-S, Koh J-T (2018) Elevated extracellular calcium ions promote proliferation and migration of mesenchymal stem cells via increasing osteopontin expression. Exp Mol Med 50:1–16

    Article  PubMed  PubMed Central  Google Scholar 

  131. Xu W, Liu B, Liu X, Chiang MY, Li B, Xu Z, Liao X (2016) Regulation of BMP2-induced intracellular calcium increases in osteoblasts. J Orthop Res 34:1725–1733

    Article  CAS  PubMed  Google Scholar 

  132. Ahmed ASI, Sheng MH, Lau K-HW, Wilson SM, Wongworawat MD, Tang X, Ghahramanpouri M, Nehme A, Xu Y, Abdipour A (2022) Calcium released by osteoclastic resorption stimulates autocrine/paracrine activities in local osteogenic cells to promote coupled bone formation. Am J Physiol Cell Physiol 322:C977–C990

    Article  PubMed  PubMed Central  Google Scholar 

  133. Yanai R, Tetsuo F, Ito S, Itsumi M, Yoshizumi J, Maki T, Mori Y, Kubota Y, Kajioka S (2019) Extracellular calcium stimulates osteogenic differentiation of human adipose-derived stem cells by enhancing bone morphogenetic protein-2 expression. Cell Calcium 83:102058

    Article  CAS  PubMed  Google Scholar 

  134. Salhotra A, Shah HN, Levi B, Longaker MT (2020) Mechanisms of bone development and repair. Nat Rev Mol Cell Biol 21:696–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fei D, Zhang Y, Wu J, Zhang H, Liu A, He X, Wang J, Li B, Wang Q, Jin Y (2019) Cav1.2 regulates osteogenesis of bone marrow-derived mesenchymal stem cells via canonical Wnt pathway in age-related osteoporosis. Aging Cell 18:e12967

    Article  PubMed  PubMed Central  Google Scholar 

  136. Takamatsu A, Ohkawara B, Ito M, Masuda A, Sakai T, Ishiguro N, Ohno K (2014) Verapamil protects against cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling. PLoS ONE 9:e92699

    Article  PubMed  PubMed Central  Google Scholar 

  137. Cohen MJ, Chirico WJ, Lipke PN (2020) Through the back door: unconventional protein secretion. Cell Surf 6:100045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wilkens S (2015) Structure and mechanism of ABC transporters. F1000Prime Rep. https://doi.org/10.12703/P7-14

    Article  PubMed  PubMed Central  Google Scholar 

  139. Clancy JW, Tricarico CJ, D’Souza-Schorey C (2015) Tumor-derived microvesicles in the tumor microenvironment: how vesicle heterogeneity can shape the future of a rapidly expanding field. BioEssays 37:1309–1316

    Article  CAS  PubMed  Google Scholar 

  140. Henderson MC, Azorsa DO (2012) The genomic and proteomic content of cancer cell-derived exosomes. Front Oncol 2:38

    Article  PubMed  PubMed Central  Google Scholar 

  141. D’Souza-Schorey C, Schorey JS (2018) Regulation and mechanisms of extracellular vesicle biogenesis and secretion. Essays Biochem 62:125–133

    Article  PubMed  Google Scholar 

  142. D’Souza-Schorey C, Clancy JW (2012) Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev 26:1287–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Deng L, Wang Y, Peng Y, Wu Y, Ding Y, Jiang Y, Shen Z, Fu Q (2015) Osteoblast-derived microvesicles: a novel mechanism for communication between osteoblasts and osteoclasts. Bone 79:37–42

    Article  CAS  PubMed  Google Scholar 

  144. Cappariello A, Loftus A, Muraca M, Maurizi A, Rucci N, Teti A (2018) Osteoblast-derived extracellular vesicles are biological tools for the delivery of active molecules to bone. J Bone Miner Res 33:517–533

    Article  CAS  PubMed  Google Scholar 

  145. Eichholz KF, Woods I, Riffault M, Johnson GP, Corrigan M, Lowry MC, Shen N, Labour M-N, Wynne K, O’Driscoll L (2020) Human bone marrow stem/stromal cell osteogenesis is regulated via mechanically activated osteocyte-derived extracellular vesicles. Stem Cells Transl Med 9:1431–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Qin Y, Wang L, Gao Z, Chen G, Zhang C (2016) Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci Rep 6:1–11

    Google Scholar 

  147. Qin Y, Peng Y, Zhao W, Pan J, Ksiezak-Reding H, Cardozo C, Wu Y, Divieti Pajevic P, Bonewald LF, Bauman WA, Qin W (2017) Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: a novel mechanism in muscle-bone communication. J Biol Chem 292:11021–11033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Huynh N, VonMoss L, Smith D, Rahman I, Felemban M, Zuo J, Rody W Jr, McHugh K, Holliday L (2016) Characterization of regulatory extracellular vesicles from osteoclasts. J Dent Res 95:673–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Burgoyne RD, Morgan A (1998) Calcium sensors in regulated exocytosis. Cell Calcium 24:367–376

    Article  CAS  PubMed  Google Scholar 

  150. Müller CS, Haupt A, Bildl W, Schindler J, Knaus H-G, Meissner M, Rammner B, Striessnig J, Flockerzi V, Fakler B (2010) Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc Natl Acad Sci 107:14950–14957

    Article  PubMed  PubMed Central  Google Scholar 

  151. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  CAS  PubMed  Google Scholar 

  152. Zhao H, Laitala-Leinonen T, Parikka V, Väänänen HK (2001) Downregulation of small GTPase Rab7 impairs osteoclast polarization and bone resorption* 210. J Biol Chem 276:39295–39302

    Article  CAS  PubMed  Google Scholar 

  153. Croke M, Ross FP, Korhonen M, Williams DA, Zou W, Teitelbaum SL (2011) RAC deletion in osteoclasts causes severe osteopetrosis. J Cell Sci 124:3811–3821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhao H (2012) Membrane trafficking in osteoblasts and osteoclasts: new avenues for understanding and treating skeletal diseases. Traffic 13:1307–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Picher MM, Oprişoreanu A-M, Jung S, Michel K, Schoch S, Moser T (2017) Rab interacting molecules 2 and 3 directly interact with the pore-forming CaV1.3 Ca2+ channel subunit and promote its membrane expression. Front Cell Neurosci 11:160

    Article  PubMed  PubMed Central  Google Scholar 

  156. Gebhart M, Juhasz-Vedres G, Zuccotti A, Brandt N, Engel J, Trockenbacher A, Kaur G, Obermair GJ, Knipper M, Koschak A (2010) Modulation of Cav1. 3 Ca2+ channel gating by Rab3 interacting molecule. Mol Cell Neurosci 44:246–259

    Article  CAS  PubMed  Google Scholar 

  157. Lynch KL, Gerona RR, Kielar DM, Martens S, McMahon HT, Martin TF (2008) Synaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion. Mol Biol Cell 19:5093–5103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhao H, Ito Y, Chappel J, Andrews NW, Teitelbaum SL, Ross FP (2008) Synaptotagmin VII regulates bone remodeling by modulating osteoclast and osteoblast secretion. Dev Cell 14:914–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Martínez San Segundo P, Terni B, Burgueño J, Monroy X, Dordal A, Merlos M, Llobet A (2020) Outside-in regulation of the readily releasable pool of synaptic vesicles by α2δ-1. FASEB J 34:1362–1377

    Article  PubMed  Google Scholar 

  160. Morrell AE, Brown GN, Robinson ST, Sattler RL, Baik AD, Zhen G, Cao X, Bonewald LF, Jin W, Kam LC (2018) Mechanically induced Ca2+ oscillations in osteocytes release extracellular vesicles and enhance bone formation. Bone Res 6:1–11

    Article  CAS  Google Scholar 

  161. Lv P-y, Gao P-f, Tian G-j, Yang Y-y, Mo F-f, Wang Z-h, Sun L, Kuang M-j, Wang Y-l (2020) Osteocyte-derived exosomes induced by mechanical strain promote human periodontal ligament stem cell proliferation and osteogenic differentiation via the miR-181b-5p/PTEN/AKT signaling pathway. Stem Cell Res Ther 11:1–15

    Article  Google Scholar 

  162. Farach-Carson MC, Carson DD (2007) Perlecan—a multifunctional extracellular proteoglycan scaffold. Glycobiology 17:897–905

    Article  CAS  PubMed  Google Scholar 

  163. Viti F, Landini M, Mezzelani A, Petecchia L, Milanesi L, Scaglione S (2016) Osteogenic differentiation of MSC through calcium signaling activation: transcriptomics and functional analysis. PLoS ONE 11:e0148173

    Article  PubMed  PubMed Central  Google Scholar 

  164. Ahamad N, Singh BB (2021) Calcium channels and their role in regenerative medicine. World J Stem Cells 13:260

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by 1F32AR074893-01 to CSW and 1R01AR074473-01 to WRT and MCFC.

Author information

Authors and Affiliations

Authors

Contributions

PCRF; CSW; MCFC; WRT.

Corresponding author

Correspondence to William R. Thompson.

Ethics declarations

Conflict of interest

Perla C. Reyes Fernandez, Christian S. Wright, Mary C. Farach-Carson, and William R. Thompson declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes Fernandez, P.C., Wright, C.S., Farach-Carson, M.C. et al. Examining Mechanisms for Voltage-Sensitive Calcium Channel-Mediated Secretion Events in Bone Cells. Calcif Tissue Int 113, 126–142 (2023). https://doi.org/10.1007/s00223-023-01097-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-023-01097-w

Keywords

Navigation