Skip to main content

Advertisement

Log in

Contemporary Advances in Computer-Assisted Bone Histomorphometry and Identification of Bone Cells in Culture

  • Review Article
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Static and dynamic bone histomorphometry and identification of bone cells in culture are labor-intensive and highly repetitive tasks. Several computer-assisted methods have been proposed to ease these tasks and to take advantage of the increased computational power available today. The present review aimed to provide an overview of contemporary methods utilizing specialized computer software to perform bone histomorphometry or identification of bone cells in culture. In addition, a brief historical perspective on bone histomorphometry is included. We identified ten publications using five different computer-assisted approaches (1) ImageJ and BoneJ; (2) Histomorph: OsteoidHisto, CalceinHisto, and TrapHisto; (3) Fiji/ImageJ2 and Trainable Weka Segmentation (TWS); (4) Visiopharm and artificial intelligence (AI); and (5) Osteoclast identification using deep learning with Single Shot Detection (SSD) architecture, Darknet and You Only Look Once (YOLO), or watershed algorithm (OC_Finder). The review also highlighted a substantial need for more validation studies that evaluate the accuracy of the new computational methods to the manual and conventional analyses of histological bone specimens and cells in culture using microscopy. However, a substantial evolution has occurred during the last decade to identify and separate bone cells and structures of interest. Most early studies have used simple image segmentation to separate structures of interest, whereas the most recent studies have utilized AI and deep learning. AI has been proposed to substantially decrease the amount of time needed for analyses and enable unbiased assessments. Despite the clear advantages of highly sophisticated computational methods, the limited nature of existing validation studies, particularly those that assess the accuracy of the third-generation methods compared to the second-generation methods, appears to be an important reason that these techniques have failed to gain wide acceptance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Adapted from Emmanuel et al. under the terms of the Creative Commons Attribution License (CC BY) [25]

Fig. 4

Adapted from Cohen-Karlik et al. under the terms of the Creative Commons Attribution License (CC BY) [26]

Fig. 5

Adapted from Wang et al. under the terms of the Creative Commons Attribution License (CC BY) [27]

Similar content being viewed by others

References

  1. Dempster DW, Compston JE, Drezner MK et al (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 28:2–17. https://doi.org/10.1002/jbmr.1805

    Article  Google Scholar 

  2. Jee WSS (2005) The past, present, and future of bone morphometry: its contribution to an improved understanding of bone biology. J Bone Miner Metab 23:1–10

    Article  Google Scholar 

  3. Gundersen HJG (1980) Stereology - or how figures for spatial shape and content are obtained by observation of structures in sections. Microsc Acta 83:409–426

    CAS  Google Scholar 

  4. Vesterby A, Gundersen HJG, Melsen F (1989) Star volume of marrow space and trabeculae of the first lumbar vertebra: sampling efficiency and biological variation. Bone 10:7–13. https://doi.org/10.1016/8756-3282(89)90140-3

    Article  CAS  Google Scholar 

  5. Vesterby A, Kragstrup J, Gundersen HJG, Melsen F (1987) Unbiased stereologic estimation of surface density in bone using vertical sections. Bone 8:13–17. https://doi.org/10.1016/8756-3282(87)90126-8

    Article  CAS  Google Scholar 

  6. Mellish RWE, Ferguson-Pell MW, Cochran GVB et al (1991) A new manual method for assessing two-dimensional cancellous bone structure: comparison between iliac crest and lumbar vertebra. J Bone Miner Res 6:689–696. https://doi.org/10.1002/jbmr.5650060706

    Article  CAS  Google Scholar 

  7. Garrahan NJ, Mellish RWE, Compston JE (1986) A new method for the two-dimensional analysis of bone structure in human iliac crest biopsies. J Microsc 142:341–349. https://doi.org/10.1111/j.1365-2818.1986.tb04289.x

    Article  CAS  Google Scholar 

  8. Huffer WE, Ruegg P, Zhu J-M, Lepoff RB (1994) Semiautomated methods for cancellous bone histomorphometry using a general-purpose video image analysis system. J Microsc 173:53–66. https://doi.org/10.1111/j.1365-2818.1994.tb03427.x

    Article  CAS  Google Scholar 

  9. Woodbury LA, Woodbury NA, Wronski T, Jee WSS (1976) Preliminary studies on the use of the Quantimet-720 for the measurement of radiographs of bone sections. Int Nucl Inf Syst. https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=8302068

  10. Hollinger JO, Gee SA (1981) Evaluation of the Parietal Bones in the Rat as a Specific Site for the Testing of Osteogenic Materials. A Simple Animal Model to Study Bone Implant Material. US Army Inst. Dent. Res. https://apps.dtic.mil/sti/citations/ADA107036

  11. Wronski TJ, Cintrón M, Dann LM (1988) Temporal relationship between bone loss and increased bone turnover in ovariectomized rats. Calcif Tissue Int 43:179–183. https://doi.org/10.1007/BF02571317

    Article  CAS  Google Scholar 

  12. Chow JWM, Jagger CJ, Chambers TJ (1993) Characterization of osteogenic response to mechanical stimulation in cancellous bone of rat caudal vertebrae. Am J Physiol - Endocrinol Metab. https://doi.org/10.1152/ajpendo.1993.265.2.e340

    Article  Google Scholar 

  13. Schwartz MP, Recker RR (1981) Comparison of surface density and volume of human iliac trabecular bone measured directly and by applied stereology. Calcif Tissue Int 33:561–565. https://doi.org/10.1007/BF02409492

    Article  CAS  Google Scholar 

  14. Parfitt AM, Rao DS, Stanciu J et al (1985) Irreversible bone loss in osteomalacia. comparison of radial photon absorptiometry with iliac bone histomorphometry during treatment. J Clin Invest 76:2403–2412. https://doi.org/10.1172/JCI112253

    Article  CAS  Google Scholar 

  15. Delmas PD, Fontanges E, Duboeuf F et al (1988) Comparison of bone mass measured by histomorphometry on iliac biopsy and by dual photon absorptiometry of the lumbar spine. Bone 9:209–213. https://doi.org/10.1016/8756-3282(88)90033-6

    Article  CAS  Google Scholar 

  16. Wright CDP, Vedi S, Garrahan NJ et al (1992) Combined inter-observer and inter-method variation in bone histomorphometry. Bone 13:205–208. https://doi.org/10.1016/8756-3282(92)90198-6

    Article  CAS  Google Scholar 

  17. Compston JE, Vedi S, Stellon AJ (1986) Inter-observer and intra-observer variation in bone histomorphometry. Calcif Tissue Int 38:67–70. https://doi.org/10.1007/BF02556831

    Article  CAS  Google Scholar 

  18. Parfitt AM, Drezner MK, Glorieux FH et al (1987) Bone histomorphometry: Standardization of nomenclature, symbols, and units: report of the asbmr histomorphometry nomenclature committee. J Bone Miner Res 2:595–610. https://doi.org/10.1002/jbmr.5650020617

    Article  CAS  Google Scholar 

  19. Martin I, Mastrogiacomo M, De Leo G et al (2002) Fluorescence microscopy imaging of bone for automated histomorphometry. Tissue Eng 8:847–852. https://doi.org/10.1089/10763270260424204

    Article  Google Scholar 

  20. Doube M, Klosowski MM, Arganda-Carreras I et al (2010) BoneJ: free and extensible bone image analysis in ImageJ. Bone 47:1076–1079. https://doi.org/10.1016/j.bone.2010.08.023

    Article  Google Scholar 

  21. Hyun Hong S (2012) Computer-automated static, dynamic and cellular bone histomorphometry. J Tissue Sci Eng 05:004. https://doi.org/10.4172/2157-7552.s1-004

    Article  CAS  Google Scholar 

  22. Egan KP, Brennan TA, Pignolo RJ (2012) Bone histomorphometry using free and commonly available software. Histopathology 61:1168–1173. https://doi.org/10.1111/j.1365-2559.2012.04333.x

    Article  Google Scholar 

  23. Domander R, Felder AA, Doube M (2021) BoneJ2 - refactoring established research software. Wellcome Open Res 6:1–21. https://doi.org/10.12688/wellcomeopenres.16619.2

    Article  Google Scholar 

  24. Van’t Hof RJ, Rose L, Bassonga E, Daroszewska A (2017) Open source software for semi-automated histomorphometry of bone resorption and formation parameters. Bone 99:69–79. https://doi.org/10.1016/j.bone.2017.03.051

    Article  Google Scholar 

  25. Emmanuel T, Brüel A, Thomsen JS et al (2021) Artificial intelligence-assisted identification and quantification of osteoclasts. MethodsX 8:101272. https://doi.org/10.1016/j.mex.2021.101272

    Article  Google Scholar 

  26. Cohen-Karlik E, Awida Z, Bergman A et al (2021) Quantification of osteoclasts in culture, powered by machine learning. Front Cell Dev Biol 9:1267. https://doi.org/10.3389/fcell.2021.674710

    Article  Google Scholar 

  27. Wang X, Kittaka M, He Y et al (2022) OC_Finder: osteoclast segmentation, counting, and classification using watershed and deep learning. Front Bioinforma 2:6. https://doi.org/10.3389/fbinf.2022.819570

    Article  Google Scholar 

  28. Rajpurkar P, Chen E, Banerjee O, Topol EJ (2022) AI in health and medicine. Nat Med 28:31–38. https://doi.org/10.1038/s41591-021-01614-0

    Article  CAS  Google Scholar 

  29. Gulshan V, Peng L, Coram M et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. J Am Med Assoc 316:2402–2410. https://doi.org/10.1001/jama.2016.17216

    Article  Google Scholar 

  30. Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118. https://doi.org/10.1038/nature21056

    Article  CAS  Google Scholar 

  31. Rajpurkar P, Irvin J, Ball RL et al (2018) Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. https://doi.org/10.1371/journal.pmed.1002686

    Article  Google Scholar 

  32. Hannun AY, Rajpurkar P, Haghpanahi M et al (2019) Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 25:65–69. https://doi.org/10.1038/s41591-018-0268-3

    Article  CAS  Google Scholar 

  33. Gomolin A, Netchiporouk E, Gniadecki R, Litvinov IV (2020) Artificial intelligence applications in dermatology: where do we stand? Front Med 7:100. https://doi.org/10.3389/fmed.2020.00100

    Article  Google Scholar 

  34. Huang P, Lin CT, Li Y et al (2019) Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method. Lancet Digit Heal 1:e353–e362. https://doi.org/10.1016/S2589-7500(19)30159-1

    Article  Google Scholar 

  35. Wu N, Phang J, Park J et al (2020) Deep neural networks improve radiologists’ performance in breast cancer screening. IEEE Trans Med Imaging 39:1184–1194. https://doi.org/10.1109/TMI.2019.2945514

    Article  Google Scholar 

  36. McKinney SM, Sieniek M, Godbole V et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577:89–94. https://doi.org/10.1038/s41586-019-1799-6

    Article  CAS  Google Scholar 

  37. Kather JN, Pearson AT, Halama N et al (2019) Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med 25:1054–1056. https://doi.org/10.1038/s41591-019-0462-y

    Article  CAS  Google Scholar 

  38. Campanella G, Hanna MG, Geneslaw L et al (2019) Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med 25:1301–1309. https://doi.org/10.1038/s41591-019-0508-1

    Article  CAS  Google Scholar 

  39. Bera K, Schalper KA, Rimm DL et al (2019) Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology. Nat Rev Clin Oncol 16:703–715. https://doi.org/10.1038/s41571-019-0252-y

    Article  Google Scholar 

  40. Brent MB, Brüel A, Thomsen JS (2021) A systematic review of animal models of disuse-induced bone loss. Calcif Tissue Int 108:561–575. https://doi.org/10.1007/s00223-020-00799-9

    Article  CAS  Google Scholar 

  41. Brent MB (2021) Abaloparatide: a review of preclinical and clinical studies. Eur J Pharmacol 909:174409. https://doi.org/10.1016/j.ejphar.2021.174409

    Article  CAS  Google Scholar 

  42. Brent MB (2022) A review of the skeletal effects of exposure to high altitude and potential mechanisms for hypobaric hypoxia-induced bone loss. Bone 154:116258. https://doi.org/10.1016/j.bone.2021.116258

    Article  CAS  Google Scholar 

  43. Brent MB, Brüel A, Thomsen JS (2020) Animal models of disuse-induced bone loss: study protocol for a systematic review. Syst Rev 9:3. https://doi.org/10.1186/s13643-020-01441-3

    Article  Google Scholar 

  44. Emmanuel T, Mistegård J, Bregnhøj A et al (2021) Tissue-resident memory t cells in skin diseases: a systematic review. Int J Mol Sci 22:9004. https://doi.org/10.3390/ijms22169004

    Article  CAS  Google Scholar 

  45. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imagej: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  46. Rueden CT, Schindelin J, Hiner MC et al (2017) Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform 18:529. https://doi.org/10.1186/s12859-017-1934-z

    Article  Google Scholar 

  47. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  Google Scholar 

  48. Arganda-Carreras I, Kaynig V, Rueden C et al (2017) Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics 33:2424–2426. https://doi.org/10.1093/bioinformatics/btx180

    Article  CAS  Google Scholar 

  49. Malhan D, Muelke M, Rosch S et al (2018) An optimized approach to perform bone histomorphometry. Front Endocrinol (Lausanne). https://doi.org/10.3389/fendo.2018.00666

    Article  Google Scholar 

  50. Brent MB, Emmanuel T, Simonsen U et al (2022) Hypobaric hypoxia deteriorates bone mass and strength in mice. Bone 154:116203. https://doi.org/10.1016/j.bone.2021.116203

    Article  CAS  Google Scholar 

  51. Jiang J, Zhang X (2021) Research on moving object tracking technology of sports video based on deep learning algorithm. ACM Int Conf Proceeding Ser. https://doi.org/10.1145/3482632.3487433

    Article  Google Scholar 

  52. Menze M, Geiger A (2015) Object scene flow for autonomous vehicles. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 07–12:3061–3070. https://doi.org/10.1109/CVPR.2015.7298925

    Article  Google Scholar 

  53. Jia Z, Saxena A, Chen T (2011) Robotic object detection: learning to improve the classifiers using sparse graphs for path planning. IJCAI Int Jt Conf Artif Intell. https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-347

    Article  Google Scholar 

  54. Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 39:1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  55. Liu W, Anguelov D, Erhan D, et al (2016) SSD: Single shot multibox detector. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 9905 LNCS:21–37. https://doi.org/10.1007/978-3-319-46448-0_2#Sec2

  56. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2016.91

    Article  Google Scholar 

  57. Everingham M, Van Gool L, Williams CKI et al (2010) The pascal visual object classes (VOC) challenge. Int J Comput Vis 88:303–338. https://doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  58. Xia GS, Bai X, Ding J et al (2018) DOTA: a large-scale dataset for object detection in aerial images. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. https://doi.org/10.1109/CVPR.2018.00418

    Article  Google Scholar 

  59. Møgelmose A, Trivedi MM, Moeslund TB (2012) Vision-based traffic sign detection and analysis for intelligent driver assistance systems: perspectives and survey. IEEE Trans Intell Transp Syst 13:1484–1497. https://doi.org/10.1109/TITS.2012.2209421

    Article  Google Scholar 

  60. Lin TY, Maire M, Belongie S, et al (2014) Microsoft COCO: Common objects in context. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 8693 LNCS:740–755. https://doi.org/10.1007/978-3-319-10602-1_48

  61. Kohtala S, Nedal TMV, Kriesi C et al (2022) Automated quantification of human osteoclasts using object detection. Front Cell Dev Biol. https://doi.org/10.3389/FCELL.2022.941542

    Article  Google Scholar 

  62. Zhang L, Chang M, Beck CA et al (2016) Analysis of new bone, cartilage, and fibrosis tissue in healing murine allografts using whole slide imaging and a new automated histomorphometric algorithm. Bone Res 4:1–9. https://doi.org/10.1038/boneres.2015.37

    Article  CAS  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MBB and TE; methodology, MBB and TE; investigation, MBB and TE; resources, MBB and TE; data curation, MBB and TE; writing—original draft preparation, MBB and TE; writing—review and editing, MBB and TE; visualization, MBB and TE. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mikkel Bo Brent.

Ethics declarations

Conflicts of interest

M. B. Brent and T. Emmanuel declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brent, M.B., Emmanuel, T. Contemporary Advances in Computer-Assisted Bone Histomorphometry and Identification of Bone Cells in Culture. Calcif Tissue Int 112, 1–12 (2023). https://doi.org/10.1007/s00223-022-01035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-022-01035-2

Keywords

Navigation