Skip to main content

Advertisement

Log in

Development and Analysis of Mouse Medial Meniscus Posterior Root Tear Model

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Medial meniscus posterior root tears (MMPRT) are often associated with osteoarthritis (OA) progression and subchondral bone insufficiency fractures. This study aimed to develop the first MMPRT mouse model. The MMPRT model was created by sectioning the medial meniscus posterior root of 12-week-old CL57BL/6J male mice under stereomicroscopic observation. The sham operation and the destabilization of the medial meniscus (DMM) model groups were also created. OA progression and subchondral bone changes were evaluated histologically using the Osteoarthritis Research Society International (OARSI) subchondral bone scoring system at 2, 4, 8, and 12 weeks after surgery. Microcomputed tomography (µCT) was performed to evaluate the presence of insufficient fractures. OA progression and medial meniscus extrusion were observed in the MMPRT and DMM models 12 weeks after surgery. OA progressed in both models during the time course, without a significant difference in the OARSI score between the two groups. The subchondral bone score was significantly higher at 12 weeks than at 2 and 4 weeks in the MMPRT group, while no significant difference was found between the two groups. In the µCT analysis, destruction of the medial tibial plateau was observed in 4/40 knees, while none were observed in the DMM group. Of the four knees, destruction of the medial femoral condyle was also observed in three knees. Characteristic pathological changes were observed in the mouse MMPRT model. The mouse MMPRT model may be useful for investigating pathological changes after MMPRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Furumatsu T, Okazaki Y, Okazaki Y et al (2019) Injury patterns of medial meniscus posterior root tears. Orthop Traumatol Surg Res 105:107–111. https://doi.org/10.1016/j.otsr.2018.10.001

    Article  Google Scholar 

  2. Allaire R, Muriuki M, Gilbertson L, Harner CD (2008) Biomechanical consequences of a tear of the posterior root of the medial meniscus: similar to total meniscectomy. J Bone Jt Surg 90:1922–1931. https://doi.org/10.2106/JBJS.G.00748

    Article  Google Scholar 

  3. Laprade CM, Foad A, Smith SD et al (2015) Biomechanical consequences of a nonanatomic posterior medial meniscal root repair. Am J Sports Med 43:912–920. https://doi.org/10.1177/0363546514566191

    Article  Google Scholar 

  4. Krych AJ, Reardon PJ, Johnson NR et al (2017) Non-operative management of medial meniscus posterior horn root tears is associated with worsening arthritis and poor clinical outcome at 5-year follow-up. Knee Surg Sport Traumatol Arthrosc 25:383–389. https://doi.org/10.1007/s00167-016-4359-8

    Article  Google Scholar 

  5. Sayyid S, Younan Y, Sharma G et al (2019) Subchondral insufficiency fracture of the knee: grading, risk factors, and outcome. Skeletal Radiol 48:1961–1974. https://doi.org/10.1007/s00256-019-03245-6

    Article  Google Scholar 

  6. Okazaki Y, Furumatsu T, Hiranaka T et al (2020) Medial meniscus posterior root repair prevents the progression of subchondral insufficiency fracture of the knee. J Orthop Sci 26:1051–1055. https://doi.org/10.1016/j.jos.2020.10.008

    Article  Google Scholar 

  7. Clements KM, Price JS, Chambers MG et al (2003) Gene deletion of either interleukin-1β, interleukin-1β -converting enzyme, inducible nitric oxide synthase, or stromelysin 1 accelerates the development of knee osteoarthritis in mice after surgical transection of the medial collateral ligament and partia. Arthritis Rheum 48:3452–3463. https://doi.org/10.1002/art.11355

    Article  CAS  Google Scholar 

  8. Kamekura S, Hoshi K, Shimoaka T et al (2005) Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthr Cartil 13:632–641. https://doi.org/10.1016/j.joca.2005.03.004

    Article  CAS  Google Scholar 

  9. Glasson SS, Askew R, Sheppard B et al (2005) Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434:644–648. https://doi.org/10.1038/nature03369

    Article  CAS  Google Scholar 

  10. Glasson SS, Blanchet TJ, Morris EA (2007) The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr Cartil 15:1061–1069. https://doi.org/10.1016/j.joca.2007.03.006

    Article  CAS  Google Scholar 

  11. Glasson SS, Chambers MG, Van Den BWB, Little CB (2010) The OARSI histopathology initiative e recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthr Cartil 18:S17–S23. https://doi.org/10.1016/j.joca.2010.05.025

    Article  Google Scholar 

  12. Nagira K, Ikuta Y, Shinohara M et al (2020) Histological scoring system for subchondral bone changes in murine models of joint aging and osteoarthritis. Sci Rep 10:1–14. https://doi.org/10.1038/s41598-020-66979-7

    Article  CAS  Google Scholar 

  13. Fang H, Huang L, Welch I et al (2018) Early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis. Sci Rep 8:1–9. https://doi.org/10.1038/s41598-018-21184-5

    Article  CAS  Google Scholar 

  14. Lampropoulou-Adamidou K, Lelovas P, Karadimas EV et al (2014) Useful animal models for the research of osteoarthritis. Eur J Orthop Surg Traumatol 24:263–271. https://doi.org/10.1007/s00590-013-1205-2

    Article  Google Scholar 

  15. McCoy AM (2015) Animal models of osteoarthritis: comparisons and key considerations. Vet Pathol 52:803–818. https://doi.org/10.1177/0300985815588611

    Article  CAS  Google Scholar 

  16. Kuyinu EL, Narayanan G, Nair LS, Laurencin CT (2016) Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res 11:1–27. https://doi.org/10.1186/s13018-016-0346-5

    Article  Google Scholar 

  17. Pond MJ, Nuki G (1973) Experimentally-induced osteoarthritis in the dog. Ann Rheum Dis 32:387–388. https://doi.org/10.1136/ard.32.4.387

    Article  CAS  Google Scholar 

  18. Miyaji N, Nishida K, Tanaka T et al (2020) Inhibition of knee osteoarthritis progression in mice by administering SRT2014, an activator of silent information regulator 2 ortholog 1. Cartilage 13:1356–1366. https://doi.org/10.1177/1947603519900795

    Article  CAS  Google Scholar 

  19. David MA, Smith MK, Pilachowski RN et al (2017) Early, focal changes in cartilage cellularity and structure following surgically induced meniscal destabilization in the mouse. J Orthop Res 35:537–547. https://doi.org/10.1002/jor.23443

    Article  Google Scholar 

  20. Botter SM, Van Osch GJVM, Clockaerts S et al (2011) Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: an in vivo microfocal computed tomography study. Arthritis Rheum 63:2690–2699. https://doi.org/10.1002/art.30307

    Article  Google Scholar 

  21. Goldring SR, Goldring MB (2016) Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage bone crosstalk. Nat Rev Rheumatol 12:632–644. https://doi.org/10.1038/nrrheum.2016.148

    Article  Google Scholar 

  22. Finnilä MAJ, Thevenot J, Aho OM et al (2017) Association between subchondral bone structure and osteoarthritis histopathological grade. J Orthop Res 35:785–792. https://doi.org/10.1002/jor.23312

    Article  CAS  Google Scholar 

  23. Padalecki JR, Jansson KS, Smith SD et al (2014) Biomechanical consequences of a complete radial tear adjacent to the medial meniscus posterior root attachment site: in situ pull-out repair restores derangement of joint mechanics. Am J Sports Med 42:699–707. https://doi.org/10.1177/0363546513499314

    Article  Google Scholar 

  24. Marzo JM, Gurske-DePerio J (2009) Effects of medial meniscus posterior horn avulsion and repair on tibiofemoral contact area and peak contact pressure with clinical implications. Am J Sports Med 37:124–129. https://doi.org/10.1177/0363546508323254

    Article  Google Scholar 

  25. Seitz AM, Lubomierski A, Friemert B et al (2012) Effect of partial meniscectomy at the medial posterior horn on tibiofemoral contact mechanics and meniscal hoop strains in human knees. J Orthop Res 30:934–942. https://doi.org/10.1002/jor.22010

    Article  Google Scholar 

  26. Okazaki Y, Furumatsu T, Yamauchi T et al (2020) Medial meniscus posterior root repair restores the intra-articular volume of the medial meniscus by decreasing posteromedial extrusion at knee flexion. Knee Surg Sport Traumatol Arthrosc 28:3435–3442. https://doi.org/10.1007/s00167-020-05953-2

    Article  Google Scholar 

  27. Ahlback S, Bauer GCH, Bohne WH (1968) Arthritis and rheumatism spontaneous osteonecrosis of the knee. Arthritis Rheum 11:705–733. https://doi.org/10.1002/art.1780110602

    Article  CAS  Google Scholar 

  28. Hansson CJ (1938) On insufficiency fractures of femur and tibia. Acta radiol 19:554–559. https://doi.org/10.3109/00016923809137785

    Article  Google Scholar 

  29. Pentecost RL, Murray RA, Brindley HH (1964) Fatigue, insufficiency, and pathologic fractures. JAMA J Am Med Assoc 187:1001–1004. https://doi.org/10.1001/jama.1964.03060260029006

    Article  CAS  Google Scholar 

  30. Yamamoto T, Bullough PG (2000) Spontaneous osteonecrosis of the knee: the result of subchondral insufficiency fracture. J Bone Jt Surg 82:858–866

    Article  CAS  Google Scholar 

  31. Takeda M, Higuchi H, Kimura M et al (2008) Spontaneous osteonecrosis of the knee. J Bone Jt Surg 90:324–329. https://doi.org/10.1302/0301-620X.90B3.18629

    Article  CAS  Google Scholar 

  32. Kosaka H, Maeyama A, Nishio J et al (2021) Histopathologic evaluation of bone marrow lesions in early stage subchondral insufficiency fracture of the medial femoral condyle. Int J Clin Exp Pathol 14:819–826

    Google Scholar 

Download references

Acknowledgements

We thank Ms. Minako Nagata, Ms. Maya Yasuda, and Ms. KyokoTanaka for their expert technical assistance. We would like to thank Editage (www. editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Matsushita.

Ethics declarations

Conflict of interest

Koji Nukuto, Takehiko Matsushita, Kohei Kamada, Kyohei Nishida, Kanto Nagai, Noriyuki Kanzaki, Yuichi Hoshino, Tomoyuki Matsumoto, Takahiro Niikura, Ryosuke Kuroda have no conflicts of interest in the authorship and publication of this article.

Human and Animal Rights and Informed Consent

All procedures were approved by the Institutional Animal Care and Use Committee of Kobe University Graduate School of Medicine (approval number P200410). No human data were used in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

223_2022_1028_MOESM1_ESM.tif

Supplementary file1 (TIF 2700 KB) Supplemental Fig. 1 Sample allocation and collection in the medial meniscus root tear (MMPRT) model. Excld. Excluded from the analysis. PD patellar dislocation, NPD no patellar dislocation, FX Fracture, NFX no fracture

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nukuto, K., Matsushita, T., Kamada, K. et al. Development and Analysis of Mouse Medial Meniscus Posterior Root Tear Model. Calcif Tissue Int 112, 55–65 (2023). https://doi.org/10.1007/s00223-022-01028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-022-01028-1

Keywords

Navigation