Skip to main content

Advertisement

Log in

Klinefelter Bone Microarchitecture Evolution with Testosterone Replacement Therapy

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Klinefelter Syndrome (KS) patients, defined by a 47 XXY karyotype, have increased risk of fragility fractures. We have assessed bone microarchitecture by high resolution peripheral quantitative CT (HR-pQCT) at the radius and tibia in young KS patients, naïve from testosterone replacement therapy (TRT). Areal bone mineral density (BMD) and body composition were assessed by dual X-ray absorptiometry (DXA). Total testosterone (tT) was measured at baseline. Bone measurements have been repeated after 30 months of TRT. We enrolled 24 KS patients and 72 age-matched controls. KS patients were (mean ± SD) 23.7 ± 7.8 year-old. KS patients had significantly lower relative appendicular lean mass index (RALM) and lower aBMD at spine and hip than controls. Ten patients (42%) had low tT level (≤ 10.4 nmol/L). At baseline, we observed at radius a marked cortical (Ct) impairment reflected by lower Ct.area, Ct.perimeter, and Ct.vBMD than controls. At tibia, in addition to cortical fragility, we also found significant alterations of trabecular (Tb) compartment with lower trabecular bone volume (BV/TV) and Tb.vBMD as compared to controls. After 30 months of TRT, 18 (75%) KS patients were reassessed. Spine aBMD and RALM significantly increased. At radius, both cortical (Ct.Pm, Ct.Ar, Ct.vBMD, Ct.Th) and trabecular (Tb.vBMD) parameters significantly improved. At tibia, the improvement was found only in the cortical compartment. Young TRT naïve KS patients have inadequate bone microarchitecture at both the radius and tibia, which can improve on TRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Forti G, Corona G, Vignozzi L, Krausz C, Maggi M (2010) Klinefelter’s syndrome: a clinical and therapeutical update. Sex Dev 4(4–5):249–258

    Article  CAS  PubMed  Google Scholar 

  2. Groth KA, Skakkebæk A, Høst C, Gravholt CH, Bojesen A (2013) Clinical review: Klinefelter syndrome—a clinical update. J Clin Endocrinol Metab 98(1):20–30

    Article  CAS  PubMed  Google Scholar 

  3. Swerdlow AJ, Higgins CD, Schoemaker MJ, Wright AF, Jacobs PA (2005) United Kingdom Clinical Cytogenetics Group. Mortality in patients with Klinefelter syndrome in Britain: a cohort study. J Clin Endocrinol Metab 90(12):6516–6522

    Article  CAS  PubMed  Google Scholar 

  4. Bojesen A, Juul S, Birkebæk N, Gravholt CH (2004) Increased mortality in Klinefelter Syndrome. J Clin Endocrinol Metab 89(8):3830–3834

    Article  CAS  PubMed  Google Scholar 

  5. Pizzocaro A, Vena W, Condorelli R, Radicioni A, Rastrelli G, Pasquali D, Selice R, Ferlin A, Foresta C, Jannini EA et al (2020) Testosterone treatment in male patients with Klinefelter syndrome: a systematic review and meta-analysis. J Endocrinol Investig 43(12):1675–1687

    Article  CAS  Google Scholar 

  6. Stepan JJ, Burckhardt P, Hána V (2003) The effects of three-month intravenous ibandronate on bone mineral density and bone remodeling in Klinefelter’s syndrome: the influence of vitamin D deficiency and hormonal status. Bone 33(4):589–596

    Article  CAS  PubMed  Google Scholar 

  7. van den Bergh JP, Hermus AR, Spruyt AI, Sweep CG, Corstens FH, Smals AG (2001) Bone mineral density and quantitative ultrasound parameters in patients with Klinefelter’s Syndrome after long-term testosterone substitution. Osteoporos Int 12(1):55–62

    Article  PubMed  Google Scholar 

  8. Behre HM, Kliesch S, Leifke E, Link TM, Nieschlag E (1997) Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab 82(8):2386–2390

    Article  CAS  PubMed  Google Scholar 

  9. Horowitz M, Wishart JM, O’Loughlin PD, Morris HA, Need AG, Nordin BE (1992) Osteoporosis and Klinefelter’s syndrome. Clin Endocrinol 36(1):113–118

    Article  CAS  Google Scholar 

  10. Choi HR, Lim SK, Lee MS (1995) Site-specific effect of testosterone on bone mineral density in male hypogonadism. J Korean Med Sci 10(6):431–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Foresta C, Ruzza G, Mioni R, Meneghello A, Baccichetti C (1983) Testosterone and bone loss in Klinefelter syndrome. Horm Metab Res 15(1):56–57

    Article  CAS  PubMed  Google Scholar 

  12. Hiéronimus S, Lussiez V, Le Duff F, Ferrari P, Bständig B, Fénichel P (2011) Klinefelter’s syndrome and bone mineral density: is osteoporosis a constant feature? Ann Endocrinol 72(1):14–18

    Article  CAS  Google Scholar 

  13. Kübler A, Schulz G, Cordes U, Beyer J, Krause U (1992) The influence of testosterone substitution on bone mineral density in patients with Klinefelter’s syndrome. Exp Clin Endocrinol Diabetes 100(3):129–132

    Google Scholar 

  14. Stagi S, Cavalli L, Cavalli T, de Martino M, Brandi ML (2016) Peripheral quantitative computed tomography (pQCT) for the assessment of bone strength in most of bone affecting conditions in developmental age: a review. Ital J Pediatr. https://doi.org/10.1186/s13052-016-0297-9

    Article  PubMed  PubMed Central  Google Scholar 

  15. Devogelaer JP, De Cooman S, de Deuxchaisnes CN (1992) Low bone mass in hypogonadal males. Effect of testosterone substitution therapy, a densitometric study. Maturitas 15(1):17–23

    Article  CAS  PubMed  Google Scholar 

  16. Smith DA, Walker MS (1977) Changes in plasma steroids and bone density in Klinefelter’s Syndrome. Calcif Tissue Res 22:225–228

    Article  PubMed  Google Scholar 

  17. Ferlin A, Schipilliti M, Vinanzi C, Garolla A, Di Mambro A, Selice R, Lenzi A, Foresta C (2011) Bone mass in subjects with Klinefelter Syndrome: role of testosterone levels and androgen receptor gene CAG polymorphism. J Clin Endocrinol Metab 96(4):E739–E745

    Article  CAS  PubMed  Google Scholar 

  18. Luisetto G, Mastrogiacomo I, Bonanni G, Pozzan G, Botteon S, Tizian L, Galuppo P (1995) Bone mass and mineral metabolism in Klinefelter’s syndrome. Osteoporos Int 5(6):455–461

    Article  CAS  PubMed  Google Scholar 

  19. Aksglaede L, Molgaard C, Skakkebaek NE, Juul A (2008) Normal bone mineral content but unfavourable muscle/fat ratio in Klinefelter Syndrome. Arch Dis Child 93(1):30–34

    Article  CAS  PubMed  Google Scholar 

  20. Vena W, Pizzocaro A, Indirli R, Amer M, Maffezzoni F, Delbarba A, Leonardi L, Balzarini L, Ulivieri FM, Ferlin A et al (2020) Prevalence and determinants of radiological vertebral fractures in patients with Klinefelter Syndrome. Andrology 8(6):1699–1704

    Article  CAS  PubMed  Google Scholar 

  21. Delmas P, Meunier PJ (1981) Osteoporosis in Klinefelter’s syndrome Quantitative bone histological data in 5 cases and relationship with hormonal deficiency (author’s transl). Nouv Presse Med 10(9):687–690

    CAS  PubMed  Google Scholar 

  22. Liu PY, Kalak R, Lue Y, Jia Y, Erkkila K, Zhou H, Markus JS, Wang C, Swerdloff RS, Dunstan CR (2010) Genetic and hormonal control of bone volume, architecture, and remodeling in XXY mice. J Bone Miner Res 25(10):2148–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shanbhogue VV, Hansen S, Jørgensen NR, Brixen K, Gravholt CH (2014) Bone geometry, volumetric density, microarchitecture, and estimated bone strength assessed by HR-pQCT in Klinefelter Syndrome. J Bone Miner Res 29(11):2474–2482

    Article  PubMed  Google Scholar 

  24. Tournaye H, Liu J, Nagy Z, Verheyen G, Van Steirteghem A, Devroey P (1996) The use of testicular sperm for intracytoplasmic sperm injection in patients with necrozoospermia. Fertil Steril 66(2):331–334

    Article  CAS  PubMed  Google Scholar 

  25. Chaitou A, Boutroy S, Vilayphiou N, Munoz F, Delmas PD, Chapurlat R, Szulc P (2010) Association between bone turnover rate and bone microarchitecture in men: the STRAMBO study. J Bone Miner Res 25(11):2313–2323

    Article  PubMed  Google Scholar 

  26. Bacchetta J, Ginhoux T, Bernoux D, Dubourg L, Ranchin B, Roger C (2019) Assessment of mineral and bone biomarkers highlights a high frequency of hypercalciuria in asymptomatic healthy teenagers. Acta Paediatr 108(12):2253–2260

    Article  CAS  PubMed  Google Scholar 

  27. Bhasin S, Brito JP, Cunningham GR, Hayes FJ, Hodis HN, Matsumoto AM, Snyder PJ, Swerdloff RS, Wu FC, Yialamas MA (2018) Testosterone therapy in men with hypogonadism: an endocrine society* clinical practice guideline. J Clin Endocrinol Metab 103(5):1715–1744

    Article  PubMed  Google Scholar 

  28. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–6515

    Article  CAS  PubMed  Google Scholar 

  29. Szulc P, Boutroy S, Chapurlat R (2018) Prediction of fractures in men using bone microarchitectural parameters assessed by high-resolution peripheral quantitative computed tomography—the prospective STRAMBO study. J Bone Miner Res 33(8):1470–1479

    Article  CAS  PubMed  Google Scholar 

  30. Haider A, Meergans U, Traish A, Saad F, Doros G, Lips P, Gooren L (2014) Progressive improvement of T-scores in men with osteoporosis and subnormal serum testosterone levels upon treatment with testosterone over six years. Int J Endocrinol 2014:496948

    PubMed  PubMed Central  Google Scholar 

  31. Wong FH, Pun KK, Wang C (1993) Loss of bone mass in patients with Klinefelter’s Syndrome despite sufficient testosterone replacement. Osteoporos Int 3(1):3–7

    Article  CAS  PubMed  Google Scholar 

  32. Zitzmann M, Aksglaede L, Corona G, Isidori AM, Juul A, T’Sjoen G, Kliesch S, D’Hauwers K, Toppari J, Słowikowska-Hilczer J (2021) European academy of andrology guidelines on Klinefelter Syndrome endorsing organization: European Society of Endocrinology. Andrology 9(1):145–167

    Article  CAS  PubMed  Google Scholar 

  33. Lee YS, Cheng AWF, Ahmed SF, Shaw NJ, Hughes IA (2007) Genital anomalies in Klinefelter’s syndrome. Hormone Res Paediatr 68(3):150–155

    Article  CAS  Google Scholar 

  34. Ferlin A, Schipilliti M, Di Mambro A, Vinanzi C, Foresta C (2010) Osteoporosis in Klinefelter’s Syndrome. Mol Hum Reprod 16(6):402–410

    Article  CAS  PubMed  Google Scholar 

  35. Seo JT, Lee JS, Oh TH, Joo KJ (2007) The clinical significance of bone mineral density and testosterone levels in Korean men with non-mosaic Klinefelter’s Syndrome. BJU Int 99(1):141–146

    Article  CAS  PubMed  Google Scholar 

  36. Bojesen A, Birkebæk N, Kristensen K, Heickendorff L, Mosekilde L, Christiansen JS, Gravholt CH (2011) Bone mineral density in Klinefelter Syndrome is reduced and primarily determined by muscle strength and resorptive markers, but not directly by testosterone. Osteoporos Int 22(5):1441–1450

    Article  CAS  PubMed  Google Scholar 

  37. Wong SC, Scott D, Lim A, Tandon S, Ebeling PR, Zacharin M (2015) Mild deficits of cortical bone in young adults with Klinefelter Syndrome or anorchia treated with testosterone. J Clin Endocrinol Metab 100(9):3581–3589

    Article  CAS  PubMed  Google Scholar 

  38. Eulry F, Bauduceau B, Lechevalier D, Magnin J, Flageat J, Gautier D (1993) Early spinal bone loss in Klinefelter syndrome. X-ray computed tomographic evaluation in 16 cases. Rev du Rhumat Ed Française 60(4):287–291

    CAS  Google Scholar 

  39. Bojesen A, Kristensen K, Birkebaek NH, Fedder J, Mosekilde L, Bennett P, Laurberg P, Frystyk J, Flyvbjerg A, Flyvbjerg A (2006) The metabolic syndrome is frequent in Klinefelter’s Syndrome and is associated with abdominal obesity and hypogonadism. Diabetes Care 29(7):1591–1598

    Article  PubMed  Google Scholar 

  40. Kanakis GA, Nieschlag E (2018) Klinefelter Syndrome: more than hypogonadism. Metabolism 86:135

    Article  CAS  PubMed  Google Scholar 

  41. Lanfranco F, Kamischke A, Zitzmann M, Nieschlag E (2004) Klinefelter’s Syndrome. Lancet 364(9430):273–283

    Article  CAS  PubMed  Google Scholar 

  42. Gennari L, Nuti R, Bilezikian JP (2004) Aromatase activity and bone homeostasis in men. J Clin Endocrinol Metab 89(12):5898–5907

    Article  CAS  PubMed  Google Scholar 

  43. Srinivas-Shankar U, Roberts SA, Connolly MJ, O’Connell MDL, Adams JE, Oldham JA, Wu FC (2010) Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 95(2):639–650

    Article  CAS  PubMed  Google Scholar 

  44. Beilin J, Ball EM, Favaloro JM, Zajac JD (2000) Effect of the androgen receptor CAG repeat polymorphism on transcriptional activity: specificity in prostate and non-prostate cell lines. J Mol Endocrinol 25(1):85–96

    Article  CAS  PubMed  Google Scholar 

  45. Zitzmann M, Depenbusch M, Gromoll J, Nieschlag E (2004) X-chromosome inactivation patterns and androgen receptor functionality influence phenotype and social characteristics as well as pharmacogenetics of testosterone therapy in Klinefelter patients. J Clin Endocrinol Metab 89(12):6208–6217

    Article  CAS  PubMed  Google Scholar 

  46. Bojesen A, Hertz JM, Gravholt CH (2011) Genotype and phenotype in Klinefelter syndrome—impact of androgen receptor polymorphism and skewed X inactivation. Int J Androl 34(6 Pt 2):e642–e648

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Y Bourgin, C Coutisson, B Dancer, D Foesser, N Paquin, C Planckaert, N Trehet-Mendel and V Ripoll for their help to conduct the study. The authors thank François Duboeuf (INSERM UMR 1033) for extracting data on body composition. The authors thank Dr M. Proriol for her advice on growth plate aspect. The authors thank P Robinson (Hospices Civils de Lyon) for editing corrections. This study was supported by a non restricted Research Grant from Roche-Chugai to CC.

Funding

This study was supported by a non restricted Research Grant from Roche-Chugai Pharmaceutical (CC). An institutional funding for the VITADOS cohort was provided by the Programme Hospitalier de Recherche Clinique Inter-régional (PHRCi AURA) (J Bacchetta, 2011).

Author information

Authors and Affiliations

Authors

Contributions

Study design: IP, SB and CC. Study conduct: IP and CC. Data collection: IP, SA, SB, JB, HL and CC. Data analysis: AP, CC, MP, PS. Data interpretation: AP, CC, PS. Drafting manuscript: AP, CC, PS. Revising manuscript content: IP, SA, SB, JB, HL and RC. Approving final version of manuscript: AP, PS, IP, SA, SB, JB, HL, RC and CC. AP and CC take responsibility for the integrity of the data analysis.

Corresponding author

Correspondence to C. B. Confavreux.

Ethics declarations

Conflict of interest

A. Piot, I. Plotton, S. Boutroy, J. Bacchetta, S. Ailloud, H. Lejeune, R. D. Chapurlat, P. Szulc and C. B. Confavreux declare that they have no conflict of interest concerning this study.

Ethical Approval

It has been approved by the local ethics committee “Comité de Protection des Personnes Lyon Sud-Est II—CHU de Lyon, France” (study number 2010-017-2 on June 17th 2010 with amendments on September 9th 2015 and October 10th 2017). The study has been performed in agreement with the Helsinki Declarations of 1975 and 1983.

Informed Consent

All patients, and parents in case of minors, provided written consent for the study.

Human and Animal Rights statement

The authors certify that the study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1299 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piot, A., Plotton, I., Boutroy, S. et al. Klinefelter Bone Microarchitecture Evolution with Testosterone Replacement Therapy. Calcif Tissue Int 111, 35–46 (2022). https://doi.org/10.1007/s00223-022-00956-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-022-00956-2

Keywords

Navigation