Skip to main content

Advertisement

Log in

Silibinin Can Promote Bone Regeneration of Selenium Hydrogel by Reducing the Oxidative Stress Pathway in Ovariectomized Rats

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteoporosis-related bone defects are a major public health concern. Considering poor effects of a singular pharmacological treatment, many have sought combination therapies, including local treatment combined with systemic intervention. Based on recent evidence that selenium and silibinin increase bone formation and bone mineral density, it is hypothesized that systemic administration with silibinin plus local treatment with selenium may have an additive effect on bone regeneration in an OVX rat model with bone defects. To verify this hypothesis, 3-month-old ovariectomized Sprague- Dawley rats (n = 10/gp) were intraperitoneally with a dose of 50 mg/kg silibinin with selenium hydrogel scaffolds implanted into femoral metaphysis bone defect. Moreover, the MC3T3-E1 cells were co-cultured with selenium and silibinin, and observed any change of cell viability, ROS, and osteogenic activity. Experiment results show that the cell mineralization and osteogenic activity of silibinin plus selenium (SSe) group is enormously higher than the control (Con) group and selenium (Se) group, while ROS appears to be immensely reduced. Osteogenic protein expressions such as SIRT1, SOD2, RUNX-2 and OC of SSe group are significantly higher than Con group and Se group. Micro-CT and Histological analysis evaluation display that group SSe, compared with Con group and Se group, presents the strongest effect on bone regeneration, bone mineralization and higher expression of SIRT1 and SOD2. RT-qPCR analysis indicates that SSe group manifests increased SIRT1, SOD1, SOD2 and CAT than the Con group and Se group (p < 0.05). Our current study demonstrates that systemic administration with SIL plus local treatment with Se is a scheme for rapid repair of femoral condylar defects, and these effects may be achieved via reducing the oxidative stress pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cosman F (2020) Anabolic therapy and optimal treatment sequences for patients with osteoporosis at high risk for fracture. Endocr Pract 26(7):777–786

    Article  PubMed  Google Scholar 

  2. Abidin N, Mitra S (2020) Total vs. bioavailable: determining a better 25(OH)D index in association with bone density and muscle mass in postmenopausal women. Metabolites 11(1):23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Tao Z, Zhou W, Wu X et al (2019) Single-dose local administration of parathyroid hormone (1–34, PTH) with β-tricalcium phosphate/collagen (β-TCP/COL) enhances bone defect healing in ovariectomized rats. J Bone Miner Metab 37(1):28–35

    Article  CAS  PubMed  Google Scholar 

  4. Liu X, Chin J, Qu X et al (2017) The beneficial effect of praeruptorin C on osteoporotic bone in ovariectomized mice via suppression of osteoclast formation and bone resorption. Front Pharmacol 8:627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Liang B, Shi Q, Xu J et al (2020) Poly (glycerol sebacate)-based bio-artificial multiporous matrix for bone regeneration. Front Chem 8:603577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmidt A (2021) Autologous bone graft: is it still the gold standard? Injury 52:S18–S22

    Article  PubMed  Google Scholar 

  7. Bharadwaz A, Jayasuriya A (2021) Osteogenic differentiation cues of the bone morphogenetic protein-9 (BMP-9) and its recent advances in bone tissue regeneration. Mater Sci Eng C 120:111748

    Article  CAS  Google Scholar 

  8. Lee B, Lobanov A, Marino S et al (2011) A 4-selenocysteine, 2-selenocysteine insertion sequence (SECIS) element methionine sulfoxide reductase from metridium senile reveals a non-catalytic function of selenocysteines. J Biol Chem 286(21):18747–18755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dumitrescu AM, Liao XH, Abdullah MS et al (2005) Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet 37(11):1247–1252

    Article  CAS  PubMed  Google Scholar 

  10. Schoenmakers E, Agostini M, Mitchell C et al (2010) Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Investig 120(12):4220–4235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murphy E, Gluer CC, Reid DM et al (2010) Thyroid function within the upper normal range is associated with reduced bone mineral density and an increased risk of nonvertebral fractures in healthy euthyroid postmenopausal women. J Clin Endocrinol Metab 95(7):3173–3181

    Article  CAS  PubMed  Google Scholar 

  12. Hoeg A, Gogakos A, Murphy E et al (2012) Bone turnover and bone mineral density are independently related to selenium status in healthy euthyroid postmenopausal women. J Clin Endocrinol Metab 97(11):4061–4070

    Article  CAS  PubMed  Google Scholar 

  13. Song J, Jeon Y, Tian J et al (2019) Evaluation of silymarin/duck’s feet-derived collagen/hydroxyapatite sponges for bone tissue regeneration. Mater Sci Eng C 97:347–355

    Article  CAS  Google Scholar 

  14. Shen Y, Zhao H, Wang Z et al (2019) Silibinin declines blue light-induced apoptosis and inflammation through MEK/ERK/CREB of retinal ganglion cells. Artif Cells Nanomed Biotechnol 47(1):4059–4065

    Article  CAS  PubMed  Google Scholar 

  15. Rajalakshmi S, Vimalraj S, Saravanan S et al (2018) Synthesis and characterization of silibinin/phenanthroline/neocuproine copper(II) complexes for augmenting bone tissue regeneration: an in vitro analysis. J Biol Inorg Chem 23(5):753–762

    Article  CAS  PubMed  Google Scholar 

  16. Vimalraj S, Rajalakshmi S, Saravanan S et al (2018) Synthesis and characterization of zinc-silibinin complexes: a potential bioactive compound with angiogenic, and antibacterial activity for bone tissue engineering. Colloids Surf B 167:134–143

    Article  CAS  Google Scholar 

  17. Ying X, Sun L, Chen X et al (2013) Silibinin promotes osteoblast differentiation of human bone marrow stromal cells via bone morphogenetic protein signaling. Eur J Pharmacol 721:225–230

    Article  CAS  PubMed  Google Scholar 

  18. Wang T, Cai L, Wang Y et al (2017) The protective effects of silibinin in the treatment of streptozotocin-induced diabetic osteoporosis in rats. Biomed Pharmacother 89:681–688

    Article  CAS  PubMed  Google Scholar 

  19. Ying X, Chen X, Liu H et al (2015) Silibinin alleviates high glucose-suppressed osteogenic differentiation of human bone marrow stromal cells via antioxidant effect and PI3K/Akt signaling. Eur J Pharmacol 765:394–401

    Article  CAS  PubMed  Google Scholar 

  20. Zhang W, Sun C, Zhu J et al (2020) 3D printed porous titanium cages filled with simvastatin hydrogel promotes bone ingrowth and spinal fusion in rhesus macaques. Biomater Sci 8(15):4147–4156

    Article  CAS  PubMed  Google Scholar 

  21. Tao ZS, Lv YX, Cui W et al (2016) Effect of teriparatide on repair of femoral metaphyseal defect in ovariectomized rats. Z Gerontol Geriatr 49(5):423–428

    Article  PubMed  Google Scholar 

  22. Tao ZS, Wu XJ, Zhou WS et al (2019) Local administration of aspirin with beta-tricalcium phosphate/poly-lactic-co-glycolic acid (beta-TCP/PLGA) could enhance osteoporotic bone regeneration. J Bone Miner Metab 37(6):1026–1035

    Article  CAS  PubMed  Google Scholar 

  23. Tao ZS, Zhou WS, Xu HG et al (2020) Aspirin modified strontium-doped beta-tricalcium phosphate can accelerate the healing of femoral metaphyseal defects in ovariectomized rats. Biomed Pharmacother 132:110911

    Article  CAS  PubMed  Google Scholar 

  24. Tao ZS, Zhou WS, Wu XJ et al (2019) Single-dose local administration of parathyroid hormone (1–34, PTH) with beta-tricalcium phosphate/collagen (beta-TCP/COL) enhances bone defect healing in ovariectomized rats. J Bone Miner Metab 37(1):28–35

    Article  CAS  PubMed  Google Scholar 

  25. Alsaggar M, Bdour S, Ababneh Q et al (2020) Silibinin attenuates adipose tissue inflammation and reverses obesity and its complications in diet-induced obesity model in mice. BMC Pharmacol Toxicol 21(1):8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li YF, Li XD, Bao CY et al (2013) Promotion of peri-implant bone healing by systemically administered parathyroid hormone (1–34) and zoledronic acid adsorbed onto the implant surface. Osteoporos Int 24(3):1063–1071

    Article  CAS  PubMed  Google Scholar 

  27. Gabet Y, Kohavi D, Kohler T et al (2008) Trabecular bone gradient in rat long bone metaphyses: mathematical modeling and application to morphometric measurements and correction of implant positioning. J Bone Miner Res 23(1):48–57

    Article  PubMed  Google Scholar 

  28. Hao Y, Yingjie H, Zhang G et al (2007) Changes of microstructure and mineralized tissue in the middle and late phase of osteoporotic fracture healing in rats. Bone 41(4):631–638

    Article  PubMed  Google Scholar 

  29. He Y, Zhang G, Pan X et al (2011) Impaired bone healing pattern in mice with ovariectomy-induced osteoporosis: a drill-hole defect model. Bone 48(6):1388–1400

    Article  PubMed  Google Scholar 

  30. Xue D, Chen E, Zhong H et al (2018) Immunomodulatory properties of graphene oxide for osteogenesis and angiogenesis. Int J Nanomed 13:5799–5810

    Article  CAS  Google Scholar 

  31. Zhao F, Yao D, Guo R et al (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials (Basel, Switzerland) 5(4):2054–2130

    Article  CAS  Google Scholar 

  32. Syed D, Afaq F, Sarfaraz S et al (2008) Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation. Toxicol Appl Pharmacol 231(1):52–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shafiee A, Kehtari M, Zarei Z et al (2021) An in situ hydrogel-forming scaffold loaded by PLGA microspheres containing carbon nanotube as a suitable niche for neural differentiation. Materi Sci Eng C 120:111739

    Article  CAS  Google Scholar 

  34. Mahmoud A, Ibrahim H, El-Sawi M et al (2020) Effects of silymarin and mesenchymal stem cells on hematological and some biochemical changes induced by gamma radiation in albino rats. Int J Radiat Biol 96(2):220–227

    Article  CAS  PubMed  Google Scholar 

  35. Faedmaleki F, Shirazi F, Ejtemaeimehr S et al (2016) Study of silymarin and vitamin E protective effects on silver nanoparticle toxicity on mice liver primary cell culture. Acta Med Iran 54(2):85–95

    PubMed  Google Scholar 

  36. Wang Y, Hao H, Zhang S (2016) Lysozyme loading and release from Se doped hydroxyapatite nanoparticles. Materi Sci Eng C 61:545–552

    Article  CAS  Google Scholar 

  37. Li T, Tao Z, Wu X et al (2021) Selenium-modified calcium phosphate cement can accelerate bone regeneration of osteoporotic bone defect. J Bone Miner Metab 39(6):934–943

    Article  CAS  PubMed  Google Scholar 

  38. Kim J, Kang S, Kang M et al (2012) Osteoblastogenesis and osteoprotection enhanced by flavonolignan silibinin in osteoblasts and osteoclasts. J Cell Biochem 113(1):247–259

    Article  CAS  PubMed  Google Scholar 

  39. Honoki K (2017) Preventing aging with stem cell rejuvenation: feasible or infeasible? World J Stem Cells 9(1):1–8

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nasto L, Robinson A, Ngo K et al (2013) Mitochondrial-derived reactive oxygen species (ROS) play a causal role in aging-related intervertebral disc degeneration. J Orthop Res 31(7):1150–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu C, Zhu R, Liu H et al (2018) Aqueous extract of mori folium exerts bone protective effect through regulation of calcium and redox homeostasis via PTH/VDR/CaBP and AGEs/RAGE/Nox4/NF-κB signaling in diabetic rats. Front Pharmacol 9:1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shao J, Liu S, Zheng X et al (2021) Berberine promotes peri-implant osteogenesis in diabetic rats by ROS-mediated IRS-1 pathway. BioFactors (Oxford, England) 47(1):80–92

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant from National Natural Science Foundation of China (82002322), Funding of “Peak” Training Program and “Panfeng” Innovation Team Project for Scientific Research of Yijishan Hospital, Wannan Medical College (Grant No. GF2019G04, PF2019005, GF2019T02 and PF2019007) and Young and Middle-aged Key Project of Wannan Medical College (WK2020ZF16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhoushan Tao.

Ethics declarations

Disclosure

Zhoushan Tao, Tian-Lin Li, Min Yang and Hong-Guang Xu declare that they have no conflicts of interest.

Research involving Human and Animal Rights

All aspects of this research were conducted in accordance with the Chinese Guidelines for Animal Welfare and Experimental Protocols. All animal experiments were performed under the approval of the Ethics Committee of the First Affiliated Hospital of Wannan Medical College, Yijishan Hospital.

Informed Consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Z., Li, TL., Yang, M. et al. Silibinin Can Promote Bone Regeneration of Selenium Hydrogel by Reducing the Oxidative Stress Pathway in Ovariectomized Rats. Calcif Tissue Int 110, 723–735 (2022). https://doi.org/10.1007/s00223-021-00936-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-021-00936-y

Keywords

Navigation