Skip to main content

Advertisement

Log in

Suture Cells in a Mechanical Stretching Niche: Critical Contributors to Trans-sutural Distraction Osteogenesis

  • Review Article
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Trans-sutural distraction osteogenesis has been proposed as an alternative technique of craniofacial remodelling surgery for craniosynostosis correction. Many studies have defined the contribution of a series of biological events to distraction osteogenesis, such as changes in gene expression, changes in suture cell behaviour and changes in suture collagen fibre characteristics. However, few studies have elucidated the systematic molecular and cellular mechanisms of trans-sutural distraction osteogenesis, and no study has highlighted the contribution of cell–cell or cell–matrix interactions with respect to the whole expansion process to date. Therefore, it is difficult to translate largely primary mechanistic insights into clinical applications and optimize the clinical outcome of trans-sutural distraction osteogenesis. In this review, we carefully summarize in detail the literature related to the effects of mechanical stretching on osteoblasts, endothelial cells, fibroblasts, immune cells (macrophages and T cells), mesenchymal stem cells and collagen fibres in sutures during the distraction osteogenesis process. We also briefly review the contribution of cell–cell or cell–matrix interactions to bone regeneration at the osteogenic suture front from a comprehensive viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.

Similar content being viewed by others

References

  1. Tong H et al (2015) Trans-sutural distraction osteogenesis for midfacial hypoplasia in growing patients with cleft lip and palate: clinical outcomes and analysis of skeletal changes. Plast Reconstr Surg 136:144–155. https://doi.org/10.1097/PRS.0000000000001375

    Article  CAS  PubMed  Google Scholar 

  2. Robin NH (1999) Molecular genetic advances in understanding craniosynostosis. Plast Reconstr Surg 103:1060–1070

    Article  CAS  Google Scholar 

  3. Ten Cate AR, Freeman E, Dickinson JB (1977) Sutural development: structure and its response to rapid expansion. Am J Orthod 71:622–636. https://doi.org/10.1016/0002-9416(77)90279-2

    Article  PubMed  Google Scholar 

  4. Liang W et al (2021) Hydroxyapatite nanoparticles facilitate osteoblast differentiation and bone formation within sagittal suture during expansion in rats. Drug Des Devel Ther 15:905–917. https://doi.org/10.2147/DDDT.S299641

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ekström C, Henrikson CO, Jensen R (1977) Mineralization in the midpalatal suture after orthodontic expansion. Am J Orthod 71:449–455. https://doi.org/10.1016/0002-9416(77)90248-2

    Article  PubMed  Google Scholar 

  6. Mofid MM et al (2001) Craniofacial distraction osteogenesis: a review of 3278 cases. Plast Reconstr Surg 108:1103–1114. https://doi.org/10.1097/00006534-200110000-00001 (discussion 1115-7)

    Article  CAS  PubMed  Google Scholar 

  7. Wang XX et al (2005) Internal midface distraction in correction of severe maxillary hypoplasia secondary to cleft lip and palate. Plast Reconstr Surg 116:51–60. https://doi.org/10.1097/01.prs.0000169691.22783.29

    Article  CAS  PubMed  Google Scholar 

  8. Tong H et al (2015) Transsutural distraction osteogenesis applied to maxillary complex with new internalized distraction device: analysis of the feasibility and long-term osteogenesis outcome. J Craniofac Surg 26:402–407. https://doi.org/10.1097/SCS.0000000000001263

    Article  PubMed  Google Scholar 

  9. Opperman LA (2000) Cranial sutures as intramembranous bone growth sites. Dev Dyn 219:472–485. https://doi.org/10.1002/1097-0177(2000)9999:9999%3c::Aid-dvdy1073%3e3.0.Co;2-f

    Article  CAS  PubMed  Google Scholar 

  10. Mao JJ, Wang X, Kopher RA (2003) Biomechanics of craniofacial sutures: orthopedic implications. Angle Orthod 73:128–135. https://doi.org/10.1043/0003-3219(2003)73%3c128:Bocsoi%3e2.0.Co;2

    Article  PubMed  Google Scholar 

  11. Doro DH, Grigoriadis AE, Liu KJ (2017) Calvarial suture-derived stem cells and their contribution to cranial bone repair. Front Physiol 8:956. https://doi.org/10.3389/fphys.2017.00956

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li W et al (2020) ROCK-TAZ signaling axis regulates mechanical tension-induced osteogenic differentiation of rat cranial sagittal suture mesenchymal stem cells. J Cell Physiol 235:5972–5984. https://doi.org/10.1002/jcp.29522

    Article  CAS  PubMed  Google Scholar 

  13. Xu Y et al (2007) Isolation and characterization of posterofrontal/sagittal suture mesenchymal cells in vitro. Plast Reconstr Surg 119:819–829. https://doi.org/10.1097/01.prs.0000255540.91987.a0

    Article  CAS  PubMed  Google Scholar 

  14. Takeshita N et al (2017) In vivo expression and regulation of genes associated with vascularization during early response of sutures to tensile force. J Bone Miner Metab 35:40–51. https://doi.org/10.1007/s00774-016-0737-z

    Article  PubMed  Google Scholar 

  15. Li J et al (2020) T cells participate in bone remodeling during the rapid palatal expansion. FASEB J 34:15327–15337. https://doi.org/10.1096/fj.202001078R

    Article  CAS  PubMed  Google Scholar 

  16. Liang W et al (2021) Polarized M2 macrophages induced by mechanical stretching modulate bone regeneration of the craniofacial suture for midfacial hypoplasia treatment. Cell Tissue Res. https://doi.org/10.1007/s00441-021-03533-5

    Article  PubMed  Google Scholar 

  17. Holmes G et al (2020) Integrated transcriptome and network analysis reveals spatiotemporal dynamics of calvarial suturogenesis. Cell Rep 32:107871. https://doi.org/10.1016/j.celrep.2020.107871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhong WJ et al (2011) Periostin-like-factor-induced bone formation within orthopedic maxillary expansion. Orthod Craniofac Res 14:198–205. https://doi.org/10.1111/j.1601-6343.2011.01524.x

    Article  PubMed  Google Scholar 

  19. Romanyk DL et al (2013) Role of the midpalatal suture in FEA simulations of maxillary expansion treatment for adolescents: a review. Int Orthod 11:119–138. https://doi.org/10.1016/j.ortho.2013.02.001

    Article  PubMed  Google Scholar 

  20. Meikle MC et al (1982) Rabbit cranial suture fibroblasts under tension express a different collagen phenotype. Arch Oral Biol 27:609–613. https://doi.org/10.1016/0003-9969(82)90078-4

    Article  CAS  PubMed  Google Scholar 

  21. Warren SM et al (2008) Confocal laser scanning microscopic analysis of collagen scaffolding patterns in cranial sutures. J Craniofac Surg 19:198–203. https://doi.org/10.1097/scs.0b013e31815c8a9a

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schipani E et al (2009) Regulation of osteogenesis-angiogenesis coupling by HIFs and VEGF. J Bone Miner Res 24:1347–1353. https://doi.org/10.1359/jbmr.090602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chaqour B, Goppelt-Struebe M (2006) Mechanical regulation of the Cyr61/CCN1 and CTGF/CCN2 proteins. Febs j 273:3639–3649. https://doi.org/10.1111/j.1742-4658.2006.05360.x

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Olsen BR (2014) Distinct VEGF functions during bone development and homeostasis. Arch Immunol Ther Exp (Warsz) 62:363–368. https://doi.org/10.1007/s00005-014-0285-y

    Article  CAS  Google Scholar 

  25. Hu K, Olsen BR (2017) Vascular endothelial growth factor control mechanisms in skeletal growth and repair. Dev Dyn 246:227–234. https://doi.org/10.1002/dvdy.24463

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y et al (2012) Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J Clin Invest 122:3101–3113. https://doi.org/10.1172/JCI61209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu K, Olsen BR (2016) Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest 126:509–526. https://doi.org/10.1172/JCI82585

    Article  PubMed  PubMed Central  Google Scholar 

  28. Berendsen AD, Olsen BR (2014) How vascular endothelial growth factor-A (VEGF) regulates differentiation of mesenchymal stem cells. J Histochem Cytochem 62:103–108. https://doi.org/10.1369/0022155413516347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu F et al (2011) Rho kinase inhibitor fasudil suppresses migration and invasion though down-regulating the expression of VEGF in lung cancer cell line A549. Med Oncol 28:565–571. https://doi.org/10.1007/s12032-010-9468-5

    Article  CAS  PubMed  Google Scholar 

  30. Hirukawa K et al (2005) Effect of tensile force on the expression of IGF-I and IGF-I receptor in the organ-cultured rat cranial suture. Arch Oral Biol 50:367–372. https://doi.org/10.1016/j.archoralbio.2004.07.003

    Article  CAS  PubMed  Google Scholar 

  31. Claeys L et al (2020) Human fibroblasts as a model for the study of bone disorders. Front Endocrinol (Lausanne) 11:394. https://doi.org/10.3389/fendo.2020.00394

    Article  Google Scholar 

  32. Al-Mubarak R, Da Silveira A, Mao JJ (2005) Expression and mechanical modulation of matrix metalloproteinase-1 and -2 genes in facial and cranial sutures. Cell Tissue Res 321:465–471. https://doi.org/10.1007/s00441-005-1136-2

    Article  CAS  PubMed  Google Scholar 

  33. López B et al (2021) Diffuse myocardial fibrosis: mechanisms, diagnosis and therapeutic approaches. Nat Rev Cardiol. https://doi.org/10.1038/s41569-020-00504-1

    Article  PubMed  Google Scholar 

  34. Green DD et al (1990) Immunolocalization of collagenase and tissue inhibitor of metalloproteinases (TIMP) in mechanically deformed fibrous joints. Am J Orthod Dentofacial Orthop 97:281–288. https://doi.org/10.1016/0889-5406(90)70100-q

    Article  CAS  PubMed  Google Scholar 

  35. Yen EH, Yue CS, Suga DM (1989) Effect of force level on synthesis of type III and type I collagen in mouse interparietal suture. J Dent Res 68:1746–1751. https://doi.org/10.1177/00220345890680120501

    Article  CAS  PubMed  Google Scholar 

  36. Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285. https://doi.org/10.1111/j.1582-4934.2005.tb00355.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nakama T et al (2016) Different roles played by periostin splice variants in retinal neovascularization. Exp Eye Res 153:133–140. https://doi.org/10.1016/j.exer.2016.10.012

    Article  CAS  PubMed  Google Scholar 

  38. Li G et al (2021) Sutural fibroblasts exhibit the function of vascular endothelial cells upon mechanical strain. Arch Biochem Biophys 712:109046. https://doi.org/10.1016/j.abb.2021.109046

    Article  CAS  PubMed  Google Scholar 

  39. Lau LF (2011) CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci 68:3149–3163. https://doi.org/10.1007/s00018-011-0778-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ikegame M et al (2016) Tensile stress stimulates the expression of osteogenic cytokines/growth factors and matricellular proteins in the mouse cranial suture at the site of osteoblast differentiation. Biomed Res 37:117–126. https://doi.org/10.2220/biomedres.37.117

    Article  CAS  PubMed  Google Scholar 

  41. Ikegame M et al (2001) Tensile stress induces bone morphogenetic protein 4 in preosteoblastic and fibroblastic cells, which later differentiate into osteoblasts leading to osteogenesis in the mouse calvariae in organ culture. J Bone Miner Res 16:24–32. https://doi.org/10.1359/jbmr.2001.16.1.24

    Article  CAS  PubMed  Google Scholar 

  42. Takenouchi H et al (2014) Longitudinal quantitative evaluation of the mid-palatal suture after rapid expansion using in vivo micro-CT. Arch Oral Biol 59:414–423. https://doi.org/10.1016/j.archoralbio.2014.01.010

    Article  PubMed  Google Scholar 

  43. Park D et al (2012) Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10:259–272. https://doi.org/10.1016/j.stem.2012.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. James AW et al (2008) Proliferation, osteogenic differentiation, and fgf-2 modulation of posterofrontal/sagittal suture-derived mesenchymal cells in vitro. Plast Reconstr Surg 122:53–63. https://doi.org/10.1097/PRS.0b013e31817747b5

    Article  CAS  PubMed  Google Scholar 

  45. Maruyama T et al (2016) Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Nat Commun 7:10526. https://doi.org/10.1038/ncomms10526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ekizer A et al (2015) Bone marrow mesenchymal stem cells enhance bone formation in orthodontically expanded maxillae in rats. Angle Orthod 85:394–399. https://doi.org/10.2319/031114-177.1

    Article  PubMed  Google Scholar 

  47. Yu M et al (2021) Cranial suture regeneration mitigates skull and neurocognitive defects in craniosynostosis. Cell 184(243–256):e18. https://doi.org/10.1016/j.cell.2020.11.037

    Article  CAS  Google Scholar 

  48. Morinobu M et al (2003) Osteopontin expression in osteoblasts and osteocytes during bone formation under mechanical stress in the calvarial suture in vivo. J Bone Miner Res 18:1706–1715. https://doi.org/10.1359/jbmr.2003.18.9.1706

    Article  CAS  PubMed  Google Scholar 

  49. Denu RA et al (2016) Fibroblasts and mesenchymal stromal/stem cells are phenotypically indistinguishable. Acta Haematol 136:85–97. https://doi.org/10.1159/000445096

    Article  CAS  PubMed  Google Scholar 

  50. Lynch MD, Watt FM (2018) Fibroblast heterogeneity: implications for human disease. J Clin Invest 128:26–35. https://doi.org/10.1172/jci93555

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dupont S et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183. https://doi.org/10.1038/nature10137

    Article  CAS  PubMed  Google Scholar 

  52. Qin X et al (2019) Runx2 regulates cranial suture closure by inducing hedgehog, Fgf, Wnt and Pthlh signaling pathway gene expressions in suture mesenchymal cells. Hum Mol Genet 28:896–911. https://doi.org/10.1093/hmg/ddy386

    Article  CAS  PubMed  Google Scholar 

  53. Kawane T et al (2018) Runx2 is required for the proliferation of osteoblast progenitors and induces proliferation by regulating Fgfr2 and Fgfr3. Sci Rep 8:13551. https://doi.org/10.1038/s41598-018-31853-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Iseki S, Wilkie AO, Morriss-Kay GM (1999) Fgfr1 and Fgfr2 have distinct differentiation- and proliferation-related roles in the developing mouse skull vault. Development 126:5611–5620

    Article  CAS  Google Scholar 

  55. Mikasa M et al (2011) Regulation of Tcf7 by Runx2 in chondrocyte maturation and proliferation. J Bone Miner Metab 29:291–299. https://doi.org/10.1007/s00774-010-0222-z

    Article  CAS  PubMed  Google Scholar 

  56. Merciris D et al (2007) Overexpression of the transcriptional factor Runx2 in osteoblasts abolishes the anabolic effect of parathyroid hormone in vivo. Am J Pathol 170:1676–1685. https://doi.org/10.2353/ajpath.2007.061069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee MH et al (2005) Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. J Biol Chem 280:35579–35587. https://doi.org/10.1074/jbc.M502267200

    Article  CAS  PubMed  Google Scholar 

  58. Kawane T et al (2014) Dlx5 and mef2 regulate a novel runx2 enhancer for osteoblast-specific expression. J Bone Miner Res 29:1960–1969. https://doi.org/10.1002/jbmr.2240

    Article  CAS  PubMed  Google Scholar 

  59. Mefford HC et al (2010) Copy number variation analysis in single-suture craniosynostosis: multiple rare variants including RUNX2 duplication in two cousins with metopic craniosynostosis. Am J Med Genet A 152:2203–2210. https://doi.org/10.1002/ajmg.a.33557

    Article  Google Scholar 

  60. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3(Suppl 3):S131–S139. https://doi.org/10.2215/CJN.04151206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. El-Rashidy AA et al (2017) Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater 62:1–28. https://doi.org/10.1016/j.actbio.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  62. Ikegame M, Ejiri S, Okamura H (2019) Expression of non-collagenous bone matrix proteins in osteoblasts stimulated by mechanical stretching in the cranial suture of neonatal mice. J Histochem Cytochem 67:107–116. https://doi.org/10.1369/0022155418793588

    Article  CAS  PubMed  Google Scholar 

  63. Kim HJ et al (1998) FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development 125:1241–1251

    Article  CAS  Google Scholar 

  64. Lian JB et al (2006) Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 7:1–16. https://doi.org/10.1007/s11154-006-9001-5

    Article  CAS  PubMed  Google Scholar 

  65. Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22:233–241. https://doi.org/10.1080/08977190412331279890

    Article  CAS  PubMed  Google Scholar 

  66. Heller JB et al (2007) Cranial suture response to stress: expression patterns of Noggin and Runx2. Plast Reconstr Surg 119:2037–2045. https://doi.org/10.1097/01.prs.0000260589.75706.19

    Article  CAS  PubMed  Google Scholar 

  67. Qin X et al (2021) Runt-related transcription factor-2 (Runx2) is required for bone matrix protein gene expression in committed osteoblasts in mice. J Bone Miner Res. https://doi.org/10.1002/jbmr.4386

    Article  PubMed  Google Scholar 

  68. Komori T (2010) Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res 339:189–195. https://doi.org/10.1007/s00441-009-0832-8

    Article  CAS  PubMed  Google Scholar 

  69. McCarthy TL, Centrella M, Canalis E (1989) Regulatory effects of insulin-like growth factors I and II on bone collagen synthesis in rat calvarial cultures. Endocrinology 124:301–309. https://doi.org/10.1210/endo-124-1-301

    Article  CAS  PubMed  Google Scholar 

  70. Whyte MP (1994) Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr Rev 15:439–461. https://doi.org/10.1210/edrv-15-4-439

    Article  CAS  PubMed  Google Scholar 

  71. Hunter GK, Goldberg HA (1993) Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci USA 90:8562–8565. https://doi.org/10.1073/pnas.90.18.8562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen J, Shapiro HS, Sodek J (1992) Development expression of bone sialoprotein mRNA in rat mineralized connective tissues. J Bone Miner Res 7:987–997. https://doi.org/10.1002/jbmr.5650070816

    Article  CAS  PubMed  Google Scholar 

  73. Hunter GK (2013) Role of osteopontin in modulation of hydroxyapatite formation. Calcif Tissue Int 93:348–354. https://doi.org/10.1007/s00223-013-9698-6

    Article  CAS  PubMed  Google Scholar 

  74. Boskey AL et al (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23:187–196. https://doi.org/10.1016/s8756-3282(98)00092-1

    Article  CAS  PubMed  Google Scholar 

  75. Zhao S et al (2015) Effects of strontium ranelate on bone formation in the mid-palatal suture after rapid maxillary expansion. Drug Des Devel Ther 9:2725–2734. https://doi.org/10.2147/DDDT.S82892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Geissmann F et al (2010) Development of monocytes, macrophages, and dendritic cells. Science 327:656–661. https://doi.org/10.1126/science.1178331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737. https://doi.org/10.1038/nri3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11:889–896. https://doi.org/10.1038/ni.1937

    Article  CAS  PubMed  Google Scholar 

  79. Yan Y et al (2015) T cells are required for orthodontic tooth movement. J Dent Res 94:1463–1470. https://doi.org/10.1177/0022034515595003

    Article  CAS  PubMed  Google Scholar 

  80. Liu Y et al (2017) Aspirin blocks orthodontic relapse via inhibition of CD4(+) T lymphocytes. J Dent Res 96:586–594. https://doi.org/10.1177/0022034516685527

    Article  CAS  PubMed  Google Scholar 

  81. Pawelec KM, Best SM, Cameron RE (2016) Collagen: a network for regenerative medicine. J Mater Chem B 4:6484–6496. https://doi.org/10.1039/c6tb00807k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hosseini HS et al (2020) Biomechanical signaling and collagen fiber reorientation during distraction enterogenesis. J Mech Behav Biomed Mater 101:103425. https://doi.org/10.1016/j.jmbbm.2019.103425

    Article  CAS  PubMed  Google Scholar 

  83. Liu SS et al (2011) Is there an optimal force level for sutural expansion? Am J Orthod Dentofacial Orthop 139:446–455. https://doi.org/10.1016/j.ajodo.2009.03.056

    Article  PubMed  Google Scholar 

  84. Wu BH et al (2017) Stretch force guides finger-like pattern of bone formation in suture. PLoS ONE 12:e0177159. https://doi.org/10.1371/journal.pone.0177159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bazrafshan Z, Stylios GK (2019) Spinnability of collagen as a biomimetic material: a review. Int J Biol Macromol 129:693–705. https://doi.org/10.1016/j.ijbiomac.2019.02.024

    Article  CAS  PubMed  Google Scholar 

  86. Najafi M, Farhood B, Mortezaee K (2019) Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J Cell Biochem 120:2782–2790. https://doi.org/10.1002/jcb.27681

    Article  CAS  PubMed  Google Scholar 

  87. Doyle AD, Yamada KM (2016) Mechanosensing via cell-matrix adhesions in 3D microenvironments. Exp Cell Res 343:60–66. https://doi.org/10.1016/j.yexcr.2015.10.033

    Article  CAS  PubMed  Google Scholar 

  88. Fu X et al (2015) Anchorage-dependent binding of integrin I-domain to adhesion ligands. J Mol Recognit 28:385–392. https://doi.org/10.1002/jmr.2453

    Article  CAS  PubMed  Google Scholar 

  89. Goring A et al (2019) Regulation of the bone vascular network is sexually dimorphic. J Bone Miner Res 34:2117–2132. https://doi.org/10.1002/jbmr.3825

    Article  PubMed  Google Scholar 

  90. Wan Y et al (2018) Prickle1 regulates differentiation of frontal bone osteoblasts. Sci Rep 8:18021. https://doi.org/10.1038/s41598-018-36742-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Feng R et al (2015) Positive effect of IGF-1 injection on gastrocnemius of rat during distraction osteogenesis. J Orthop Res 33:1424–1432. https://doi.org/10.1002/jor.22796

    Article  CAS  PubMed  Google Scholar 

  92. Alzahrani MM et al (2014) The effect of altering the mechanical loading environment on the expression of bone regenerating molecules in cases of distraction osteogenesis. Front Endocrinol (Lausanne) 5:214. https://doi.org/10.3389/fendo.2014.00214

    Article  Google Scholar 

  93. Zhang WB et al (2011) Expression of bone morphogenetic protein, vascular endothelial growth factor, and basic fibroblast growth factor in irradiated mandibles during distraction osteogenesis. J Oral Maxillofac Surg 69:2860–2871. https://doi.org/10.1016/j.joms.2010.12.037

    Article  PubMed  Google Scholar 

  94. Weiss S et al (2005) Systemic regulation of angiogenesis and matrix degradation in bone regeneration–distraction osteogenesis compared to rigid fracture healing. Bone 37:781–790. https://doi.org/10.1016/j.bone.2005.06.014

    Article  CAS  PubMed  Google Scholar 

  95. Zhang F et al (2020) Inflammatory macrophages facilitate mechanical stress-induced osteogenesis. Aging (Albany NY) 12:3617–3625. https://doi.org/10.18632/aging.102833

    Article  CAS  Google Scholar 

  96. Chen X et al (2005) Stretch-induced PTH-related protein gene expression in osteoblasts. J Bone Miner Res 20:1454–1461. https://doi.org/10.1359/jbmr.2005.20.8.1454

    Article  CAS  PubMed  Google Scholar 

  97. Zeng Q et al (2015) Integrin-β1, not integrin-β5, mediates osteoblastic differentiation and ECM formation promoted by mechanical tensile strain. Biol Res 48:25. https://doi.org/10.1186/s40659-015-0014-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang J et al (2019) Effects of equibiaxial mechanical stretch on extracellular matrix-related gene expression in human calvarial osteoblasts. Eur J Oral Sci 127:10–18. https://doi.org/10.1111/eos.12595

    Article  CAS  PubMed  Google Scholar 

  99. Shah HN et al (2021) Craniofacial and long bone development in the context of distraction osteogenesis. Plast Reconstr Surg 147:54e–65e. https://doi.org/10.1097/PRS.0000000000007451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in this article. This project was supported by the Key Clinical Projects of Peking University Third Hospital (BYSY2018061).

Author information

Authors and Affiliations

Authors

Contributions

WL proposed the idea of this article; WL and GL explored reviews and wrote the manuscript. EZ drafted the scheme figure. HB and ZZ revised this work critically for important contents according the reviewer’s comments, and ZZ supported this research.

Corresponding authors

Correspondence to Hongsen Bi or Zhenmin Zhao.

Ethics declarations

Conflict of interest

There will be no conflict of commercial interest for authors Wei Liang, Enzhe Zhao, Guan Li, Hongsen Bi and Zhenmin Zhao with the publication of the manuscript.

Human and Animal Rights and Informed Consent

Ethical clearance was obtained from the Peking University Biomedical Ethics Committee (No. LA2019177). All the in vivo and in vitro cellular experiments were performed according to the National Institutes of Health Regulations for the care and use of animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Zhao, E., Li, G. et al. Suture Cells in a Mechanical Stretching Niche: Critical Contributors to Trans-sutural Distraction Osteogenesis. Calcif Tissue Int 110, 285–293 (2022). https://doi.org/10.1007/s00223-021-00927-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-021-00927-z

Keywords

Navigation