Skip to main content

Advertisement

Log in

BMP-2 Induced Signaling Pathways and Phenotypes: Comparisons Between Senescent and Non-senescent Bone Marrow Mesenchymal Stem Cells

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The use of BMP-2 in orthopedic surgery is limited by uncertainty surrounding its effects on the differentiation of mesenchymal stem cells (MSCs) and how this is affected by cellular aging. This study compared the effects of recombinant human BMP-2 (rhBMP-2) on osteogenic and adipogenic differentiation between senescent and non-senescent MSCs. Senescent and non-senescent MSCs were cultured in osteogenic and adipogenic differentiation medium containing various concentrations of rhBMP-2. The phenotypes of these cells were compared by performing a calcium assay, adipogenesis assay, staining, real-time PCR, western blotting, and microarray analysis. rhBMP-2 induced osteogenic differentiation to a lesser extent (P < 0.001 and P = 0.005 for alkaline phosphatase activity and Ca2+ release) in senescent MSCs regardless of dose-dependent increase in both cells. However, the induction of adipogenic differentiation by rhBMP-2 was comparable between them. There was no difference between these two groups of cells in the adipogenesis assay (P = 0.279) and their expression levels of PPARγ were similar. Several genes such as CHRDL1, NOG, SMAD1, SMAD7, and FST encoding transcription factors were proposed to underlie the different responses of senescent and non-senescent MSCs to rhBMP-2 in microarray analyses. Furthermore, inflammatory, adipogenic, or cell death-related signaling pathways such as NF-kB or p38-MAPK pathways were upregulated by BMP-2 in senescent MSCs, whereas bone forming signaling pathways involving BMP, SMAD, and TGF- ß were upregulated in non-senescent MSCs as expected. This phenomenon explains bone forming dominance by non-senescent MSCs and possible frequent complications such as seroma, osteolysis, or neuritis in senescent MSCs during BMP-2 use in orthopedic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article and could be available from the corresponding author on reasonable request.

References

  1. Chamberlain G, Fox J, Ashton B, Middleton J (2007) Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells (Dayton, OH) 25:2739–2749

    Article  CAS  Google Scholar 

  2. Fotia C, Massa A, Boriani F, Baldini N, Granchi D (2015) Prolonged exposure to hypoxic milieu improves the osteogenic potential of adipose derived stem cells. J Cell Biochem 116:1442–1453

    Article  CAS  PubMed  Google Scholar 

  3. Berendsen AD, Olsen BR (2015) Regulation of adipogenesis and osteogenesis in mesenchymal stem cells by vascular endothelial growth factor A. J Intern Med 277:674–680

    Article  CAS  PubMed  Google Scholar 

  4. Byun MR, Kim AR, Hwang JH, Kim KM, Hwang ES, Hong JH (2014) FGF2 stimulates osteogenic differentiation through ERK induced TAZ expression. Bone 58:72–80

    Article  CAS  PubMed  Google Scholar 

  5. Wang EA, Israel DI, Kelly S, Luxenberg DP (1993) Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Fact (Chur, Switzerland) 9:57–71

    Article  CAS  Google Scholar 

  6. Kato S, Kawabata N, Suzuki N, Ohmura M, Takagi M (2009) Bone morphogenetic protein-2 induces the differentiation of a mesenchymal progenitor cell line, ROB-C26, into mature osteoblasts and adipocytes. Life Sci 84:302–310

    Article  CAS  PubMed  Google Scholar 

  7. Scott MA, Nguyen VT, Levi B, James AW (2011) Current methods of adipogenic differentiation of mesenchymal stem cells. Stem Cells Dev 20:1793–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhuang H, Zhang X, Zhu C, Tang X, Yu F, Shang GW, Cai X (2016) Molecular mechanisms of PPAR-gamma governing MSC osteogenic and adipogenic differentiation. Curr Stem Cell Res Ther 11:255–264

    Article  CAS  PubMed  Google Scholar 

  9. Yuan Z, Li Q, Luo S, Liu Z, Luo D, Zhang B, Zhang D, Rao P, Xiao J (2016) PPARgamma and Wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther 11:216–225

    Article  CAS  PubMed  Google Scholar 

  10. Cho JH, Lee JH, Yeom JS, Chang BS, Yang JJ, Koo KH, Hwang CJ, Lee KB, Kim HJ, Lee CK, Kim H, Suk KS, Nam WD, Han J (2017) Efficacy of Escherichia coli-derived recombinant human bone morphogenetic protein-2 in posterolateral lumbar fusion: an open, active-controlled, randomized, multicenter trial. Spine J 17:1866–1874

    Article  PubMed  Google Scholar 

  11. Donoso O, Pino AM, Seitz G, Osses N, Rodríguez JP (2015) Osteoporosis-associated alteration in the signalling status of BMP-2 in human MSCs under adipogenic conditions. J Cell Biochem 116:1267–1277

    Article  CAS  PubMed  Google Scholar 

  12. Fleet JC, Cashman K, Cox K, Rosen V (1996) The effects of aging on the bone inductive activity of recombinant human bone morphogenetic protein-2. Endocrinology 137:4605–4610

    Article  CAS  PubMed  Google Scholar 

  13. Hara T, Kakudo N, Morimoto N, Horio O, Ogura T, Kusumoto K (2015) Effect of aging on the osteoinductive activity of recombinant human bone morphogenetic protein-2 in rats. J Surg Res 195:377–383

    Article  CAS  PubMed  Google Scholar 

  14. Moerman EJ, Teng K, Lipschitz DA, Lecka-Czernik B (2004) Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-gamma2 transcription factor and TGF-beta/BMP signaling pathways. Aging Cell 3:379–389

    Article  CAS  PubMed  Google Scholar 

  15. Abuna RP, Stringhetta-Garcia CT, Fiori LP, Dornelles RC, Rosa AL, Beloti MM (2016) Aging impairs osteoblast differentiation of mesenchymal stem cells grown on titanium by favoring adipogenesis. J Appl Oral Sci 24:376–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng H, Qiu L, Ma J, Zhang H, Cheng M, Li W, Zhao X, Liu K (2010) Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts. Mol Biol Rep 38:5161–5168

    Article  PubMed  Google Scholar 

  17. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS ONE 3:e2213–e2212

    Article  PubMed  PubMed Central  Google Scholar 

  18. Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33:919–926

    Article  PubMed  Google Scholar 

  19. Justesen J, Stenderup K, Eriksen EF, Kassem M (2002) Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures. Calcif Tissue Int 71:36–44

    Article  CAS  PubMed  Google Scholar 

  20. Chang T-C, Hsu M-F, Wu KK (2015) High glucose induces bone marrow-derived mesenchymal stem cell senescence by upregulating autophagy. PLoS ONE 10:e0126537-e126615

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sabatti C, S Service, Freimer N (2003) False discovery rate in linkage and association genome screens for complex disorders. Genetics 164:829–833

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yue B, Lu B, Dai KR, Zhang XL, Yu CF, Lou JR, Tang TT (2005) BMP2 gene therapy on the repair of bone defects of aged rats. Calcif Tissue Int 77:395–403

    Article  CAS  PubMed  Google Scholar 

  23. James AW (2013) Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica 2013:684736

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bilem I, Chevallier P, Plawinski L, Sone ED, Durrieu MC, Laroche G (2016) RGD and BMP-2 mimetic peptide crosstalk enhances osteogenic commitment of human bone marrow stem cells. Acta Biomater 36:132–142

    Article  CAS  PubMed  Google Scholar 

  25. Menicanin D, Bartold PM, Zannettino AC, Gronthos S (2009) Genomic profiling of mesenchymal stem cells. Stem Cell Rev 5:36–50

    Article  CAS  Google Scholar 

  26. de Jong DS, Vaes BL, Dechering KJ, Feijen A, Hendriks JM, Wehrens R, Mummery CL, van Zoelen EJ, Olijve W, Steegenga WT (2004) Identification of novel regulators associated with early-phase osteoblast differentiation. J Bone Miner Res 19:947–958

    Article  PubMed  Google Scholar 

  27. Vaes BL, Dechering KJ, Feijen A, Hendriks JM, Lefevre C, Mummery CL, Olijve W, van Zoelen EJ, Steegenga WT (2002) Comprehensive microarray analysis of bone morphogenetic protein 2-induced osteoblast differentiation resulting in the identification of novel markers for bone development. J Bone Miner Res 17:2106–2118

    Article  CAS  PubMed  Google Scholar 

  28. Menni C, Kiddle SJ, Mangino M, Vinuela A, Psatha M, Steves C, Sattlecker M, Buil A, Newhouse S, Nelson S, Williams S, Voyle N, Soininen H, Kloszewska I, Mecocci P, Tsolaki M, Vellas B, Lovestone S, Spector TD, Dobson R, Valdes AM (2015) Circulating proteomic signatures of chronological age. J Gerontol A Biol Sci Med Sci 70:809–816

    Article  CAS  PubMed  Google Scholar 

  29. Talavera-Adame D, Gupta A, Kurtovic S, Chaiboonma KL, Arumugaswami V, Dafoe DC (2013) Bone morphogenetic protein-2/-4 upregulation promoted by endothelial cells in coculture enhances mouse embryoid body differentiation. Stem Cells Dev 22:3252–3260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Albers CE, Hofstetter W, Sebald HJ, Sebald W, Siebenrock KA, Klenke FM (2012) L51P - A BMP2 variant with osteoinductive activity via inhibition of Noggin. Bone 51:401–406

    Article  CAS  PubMed  Google Scholar 

  31. Jin W, Takagi T, Kanesashi SN, Kurahashi T, Nomura T, Harada J, Ishii S (2006) Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Dev Cell 10:461–471

    Article  CAS  PubMed  Google Scholar 

  32. Zhang S, Fei T, Zhang L, Zhang R, Chen F, Ning Y, Han Y, Feng XH, Meng A, Chen YG (2007) Smad7 antagonizes transforming growth factor beta signaling in the nucleus by interfering with functional Smad-DNA complex formation. Mol Cell Biol 27:4488–4499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Layliev J, Sagebin F, Weinstein A, Marchac A, Szpalski C, Saadeh PB, Warren SM (2013) Percutaneous gene therapy heals cranial defects. Gene Ther 20:922–929

    Article  CAS  PubMed  Google Scholar 

  34. Choy L, Derynck R (2003) Transforming growth factor-beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. J Biol Chem 278:9609–9619

    Article  CAS  PubMed  Google Scholar 

  35. Choy L, Skillington J, Derynck R (2000) Roles of autocrine TGF-beta receptor and Smad signaling in adipocyte differentiation. J Cell Biol 149:667–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Flanagan JN, Linder K, Mejhert N, Dungner E, Wahlen K, Decaunes P, Ryden M, Bjorklund P, Arver S, Bhasin S, Bouloumie A, Arner P, Dahlman I (2009) Role of follistatin in promoting adipogenesis in women. J Clin Endocrinol Metab 94:3003–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kawabata N, Kamiya N, Suzuki N, Matsumoto M, Takagi M (2007) Changes in extracellular activin A:follistatin ratio during differentiation of a mesenchymal progenitor cell line, ROB-C26 into osteoblasts and adipocytes. Life Sci 81:8–18

    Article  CAS  PubMed  Google Scholar 

  38. Mai Y, Zhang Z, Yang H, Dong P, Chu G, Yang G, Sun S (2014) BMP and activin membrane-bound inhibitor (BAMBI) inhibits the adipogenesis of porcine preadipocytes through Wnt/beta-catenin signaling pathway. Biochem Cell Biol 92:172–182

    Article  CAS  PubMed  Google Scholar 

  39. Zheng GB, Yoon BH, Lee JH (2017) Comparison of the osteogenesis and fusion rates between activin A/BMP-2 chimera (AB204) and rhBMP-2 in a beagle’s posterolateral lumbar spine model. Spine J 17:1529–1536

    Article  PubMed  Google Scholar 

  40. Jain RG, Phelps KD, Pekala PH (1999) Tumor necrosis factor-alpha initiated signal transduction in 3T3-L1 adipocytes. J Cell Physiol 179:58–66

    Article  CAS  PubMed  Google Scholar 

  41. Cortez M, Carmo LS, Rogero MM, Borelli P, Fock RA (2013) A high-fat diet increases IL-1, IL-6, and TNF-alpha production by increasing NF-kappaB and attenuating PPAR-gamma expression in bone marrow mesenchymal stem cells. Inflammation 36:379–386

    Article  CAS  PubMed  Google Scholar 

  42. Segales J, Perdiguero E, Munoz-Canoves P (2016) Regulation of muscle stem cell functions: a focus on the p38 MAPK signaling pathway. Front Cell Dev Biol 4:91

    Article  PubMed  PubMed Central  Google Scholar 

  43. Aouadi M, Jager J, Laurent K, Gonzalez T, Cormont M, Binetruy B, Le Marchand-Brustel Y, Tanti JF, Bost F (2007) p38MAP Kinase activity is required for human primary adipocyte differentiation. FEBS Lett 581:5591–5596

    Article  CAS  PubMed  Google Scholar 

  44. Lee JS, Park JH, Kwon IK, Lim JY (2011) Retinoic acid inhibits BMP4-induced C3H10T1/2 stem cell commitment to adipocyte via downregulating Smad/p38MAPK signaling. Biochem Biophys Res Commun 409:550–555

    Article  CAS  PubMed  Google Scholar 

  45. Wilde JM, Gumucio JP, Grekin JA, Sarver DC, Noah AC, Ruehlmann DG, Davis ME, Bedi A, Mendias CL (2016) Inhibition of p38 mitogen-activated protein kinase signaling reduces fibrosis and lipid accumulation after rotator cuff repair. J Shoulder Elbow Surg 25:1501–1508

    Article  PubMed  PubMed Central  Google Scholar 

  46. Matsumoto A, Yamaji K, Kawanami M, Kato H (2001) Effect of aging on bone formation induced by recombinant human bone morphogenetic protein-2 combined with fibrous collagen membranes at subperiosteal sites. J Periodontal Res 36:175–182

    Article  CAS  PubMed  Google Scholar 

  47. Beane OS, Fonseca VC, Cooper LL, Koren G, Darling EM (2014) Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells. PLoS ONE 9:e115963

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tannoury CA, An HS (2014) Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine J 14:552–559

    Article  PubMed  Google Scholar 

  49. Mesfin A, Buchowski JM, Zebala LP, Bakhsh WR, Aronson AB, Fogelson JL, Hershman S, Kim HJ, Ahmad A, Bridwell KH (2013) High-dose rhBMP-2 for adults: major and minor complications: a study of 502 spine cases. J Bone Joint Surg Am 95:1546–1553

    Article  PubMed  Google Scholar 

  50. Khan H, Mafi P, Mafi R, Khan W (2016) The effects of ageing on differentiation and characterisation of human mesenchymal stem cells. Curr Stem Cell Res Ther 13:378–383

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in-Aid (No.06- 2011-218) from the SNUH Research Fund. We specially thank to Pf. In-Gyu Kim for his supervision of this study.

Funding

This study was supported by a Grant-in-Aid (No.06-2011-218) from the SNUH Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

The concept was designed by JHC and JHL. Data acquisition was done by KML and DMS. Data were analyzed by JHL and DMS. Data interpretation was performed by JHC, JHL, CKL, and DMS. Initial manuscript was drafted by JHC. All authors contributed to revising the draft for intellectual content. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Jae Hyup Lee.

Ethics declarations

Conflict of interest

All authors listed above (Jae Hwan Cho, Jae Hyup Lee, Kyung Mee Lee, Choon-Ki Lee, Dong-Myung Shin) have no conflicts of interest to declare.

Ethical Approval

All procedures performed in this study were under confirmation of Institutional Review Board of SMG-SNUBMC (Seoul Metropolitan Government Seoul National University Boramae Medical Center) (IRB No: 06-2011-218) with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

223_2021_923_MOESM1_ESM.docx

Supplementary file1 (DOCX 20 kb). Supplementary material 1. Specific methodology for comparisons between senescent and non-senescent MSCs induced by rhBMP-2

223_2021_923_MOESM2_ESM.pptx

Supplementary file2 (PPTX 259 kb). Supplementary material 2. GSEA leading edge subset analysis for P4 MSC (sample CD) vs senescent MSC (sample AB)

Supplementary file3 (XLSX 34 kb). Supplementary material 3. The raw data of real-time PCR

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, J.H., Lee, J.H., Lee, K.M. et al. BMP-2 Induced Signaling Pathways and Phenotypes: Comparisons Between Senescent and Non-senescent Bone Marrow Mesenchymal Stem Cells. Calcif Tissue Int 110, 489–503 (2022). https://doi.org/10.1007/s00223-021-00923-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-021-00923-3

Keywords

Navigation