Johnell O, Kanis JA (2004) An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporos Int 15:897–902
CAS
PubMed
Google Scholar
Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202
CAS
PubMed
Google Scholar
Crandall CJ, Vasan S, LaCroix A, LeBoff MS, Cauley JA, Robbins JA et al (2018) Bone turnover markers are not associated with hip fracture risk: a case-control study in the Women’s Health Initiative. J Bone Min Res 33:1199–1208
CAS
Google Scholar
Hackl M, Heilmeier U, Weilner S, Grillari J (2016) Circulating microRNAs as novel biomarkers for bone diseases. Complex signatures for multifactorial diseases? Mol Cell Endocrinol 432:83–95
CAS
PubMed
Google Scholar
Zhao W, Shen G, Ren H, Liang D, Yu X, Zhang Z et al (2018) Therapeutic potential of microRNAs in osteoporosis function by regulating the biology of cells related to bone homeostasis. J Cell Physiol 233:9191–9208
CAS
PubMed
Google Scholar
Weilner S, Schraml E, Redl H, Grillari-Voglauer R, Grillari J (2013) Secretion of microvesicular miRNAs in cellular and organismal aging. Exp Gerontol 48:626–633
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Li L, Moore BT, Peng XH, Fang X, Lappe JM et al (2012) MiR-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. PLoS ONE 7:e34641
CAS
PubMed
PubMed Central
Google Scholar
Li H, Wang Z, Fu Q, Zhang J (2014) Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients. Biomarkers 19:553–556
CAS
PubMed
Google Scholar
Cao Z, Moore BT, Wang Y, Peng XH, Lappe JM, Recker RR, Xiao P (2014) MiR-422a as a potential microRNA biomarker for postmenopausal osteoporosis. PLoS ONE 9:e97098
PubMed
PubMed Central
Google Scholar
Meng J, Zhang D, Pan N, Sun N, Wang Q, Fan J et al (2015) Identification of miR-194-5p as a potential biomarker for postmenopausal osteoporosis. Peer J 3:e971
PubMed
Google Scholar
Seeliger C, Karpinski K, Haug AT, Vester H, Schmitt A, Bauer JS, van Griensven, (2014) Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Min Res 29:1718–1728
CAS
Google Scholar
Weilner S, Skalicky S, Salzer B, Keider V, Wagner M, Hildner F et al (2015) Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone 79:43–51
CAS
PubMed
Google Scholar
Panach L, Mifsut D, Tarin JJ, Cano A, Garcia-Perez MA (2015) Serum circulating microRNAs as biomarkers of osteoporotic fracture. Calcif Tissue Int 97:495–505
CAS
PubMed
Google Scholar
Garmilla-Ezquerra P, Sanudo C, Gelgado-Calle J, Perez-Nunez MI, Sumillera M, Riancho JA (2015) Analysis of the bone microRNome in osteoporotic fractures. Caclif Tissue Int 96:30–37
CAS
Google Scholar
Heilmeier U, Hackl M, Skalicky S, Weilner S, Schroeder F, Vierlinger K et al (2016) Serum miRNA signatures are indicative of skeletal fractures in postmenopausal women with and without type 2 diabetes and influence osteogenic and adipogenic differentiation of adipose tissue-derived mesenchymal stem cells in vitro. J Bone Miner Res 31:2173–2192
CAS
PubMed
Google Scholar
Kocijan R, Muschitz C, Geiger E, Skalicky S, Baierl A, Dormann R et al (2016) Circulating microRNA signatures in patients with idiopathic and postmenopausal osteoporosis and fragility fractures. J Clin Endocrinol Metab 101:4125–4134
CAS
PubMed
Google Scholar
Yavropoulou MP, Anastasilakis AD, Makras P, Tsalikakis DG, Grammatiki M, Yovos JG (2017) Expression of micro RNAs that regulate bone turnover in the serum of postmenopausal women with low bone mass and vertebral fractures. Eur J Endocrinol 176:169–176
CAS
PubMed
Google Scholar
Zarecki P, Hackl M, Grillari J, Debono M, Eastell R (2020) Serum microRNAs as novel biomarkers for osteoporotic vertebral fractures. Bone 130:115105
CAS
PubMed
Google Scholar
Ladang A, Beaudart C, LoCquet M, Reginster JY, Bruyere O, Cavalier E (2020) Evaluation of a panel of microRNAs that predicts fragility fracture risk: a pilot study. Calcif Tissue Int 195:239–247
Google Scholar
Boschitsch EP, Durchschlag E, Dimai HP (2017) Age-related prevalence of osteoporosis and fragility fractures: real-world data from an Austrian menopause and osteoporosis clinic. Climacteric 20:157–163
CAS
PubMed
Google Scholar
Kanis JA, McCloskey EV, Johansson H, Strom O, Borgstrom F, Oden A et al (2008) Case finding for the management of osteoporosis with FRAX-assessment and intervention thresholds for the UK. Osteoporos Int 19:1395–1408
CAS
PubMed
Google Scholar
Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res 43:W566–W570
CAS
PubMed
PubMed Central
Google Scholar
Khan J, Lieberman JA, Lockwood CM (2017) Variability in, variability out: best practice recommendations to standardize pre-analytical variables in the detection of circulating and tissue microRNAs. Clin Chem Lab Med 55:608–621
CAS
PubMed
Google Scholar
Blondal T, Jensby Nielsen S, Baker A, Andreasen D, Mouritzen P, Wrang Teilum M, Dahlsveen IK (2013) Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods 59:S1-6
CAS
PubMed
Google Scholar
Tian A, Ma J, Feng K, Liu Z, Chen L, Jia H, Ma X (2019) Reference markers of bone turnover for prediction of fracture: a meta-analysis. J Orth Surg Res 14:68
Google Scholar
Jorde R, Svartberg R, Joakimsen RM, Coucheron DH (2012) Plasma profile of microRNA after supplementation with high doses of vitamin D3 for 12 months. BMC Research Notes 5:245. https://doi.org/10.1186/1756-0500-5-245
CAS
Article
PubMed
PubMed Central
Google Scholar
Bottani M, Banfi G, Lombardi G (2020) The clinical potential of circulating miRNAs as biomarkers: present and future applications for diagnosis and prognosis of age-associated bone diseases. Biomolecules 10:E589
PubMed
Google Scholar
Jacobsen N, Andreasen D, Mouritzen P (2011) Profiling microRNAs by real-time PCR. Methods Mol Biol 732:39–54
CAS
PubMed
Google Scholar
Weilner S, Schraml E, Wieser M, Messner P, Schneider K, Wassermann K et al (2016) Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells. Aging Cell 15:744–754
CAS
PubMed
PubMed Central
Google Scholar
Feichtinger X, Muschitz C, Heimel P, Baierl A, Fahrleitner-Pammer A, Redl H et al (2018) Bone-related circulating microRNAs miR-29b-3p, miR-550a-3p, and miR-324-3p and their association to bone microstructure and histomorphometry. Sci Rep 8:4867
PubMed
PubMed Central
Google Scholar
Kocijan R, Weigl M, Skalicky S, Geiger E, Ferguson J, Leinfellner G et al (2020) MicroRNA levels in bone and blood change during bisphosphonate and teriparatide therapy in an animal model of postmenopausal women. Bone 131:115104
CAS
PubMed
Google Scholar
Wang P, Dong R, Wang B, Lou Z, Ying J, Xia C et al (2019) Genome-wide microRNA screening reveals miR-582-5p as a mesenchymal stem cell-specific microRNA in subchondral bone of the human knee joint. J Cell Physiol 234:21877–21888
CAS
PubMed
PubMed Central
Google Scholar
Valenti MT, Deiana M, Cheri S, Dotta M, Zamboni F, Gabbiani D et al (2019) Physical exercise modulates miR-21-5p, miR-129-5p, miR-378-5p, and miR-188-5p expression in progenitor cells promoting osteogenesis. Cells 8:742
CAS
PubMed Central
Google Scholar
Li CJ, Cheng P, Liang MK, Chen YS, Lu Q, Wang JY et al (2015) MicroRNA-188 regulated age-related switch between osteoblast and adipocyte differentiation. J Clin Intest 125:1509–1522
Google Scholar
Zhu W, Wu X, Yang B, Yao X, Xu P, Chen X (2019) miR-188-5p regulates proliferation and invasion via PI3K/Akt/MMP-2/9 signaling in keloids. Acta Biochim Biophys Sin 51:185–196
CAS
PubMed
Google Scholar
Jia B, Zhang Z, Qiu X, Chu H, Sun X, Zheng X, Zhao J, Li Q (2018) Analysis of the miRNA and mRNA involved in osteogenesis of adipose-derived mesenchymal stem cells. Exp Ther Med 16:1111–1120
PubMed
PubMed Central
Google Scholar
Li E, Zhang J, Yuan T, Ma B (2014) MiR-143 suppresses osteogenic differentiation by targeting Osterix. Mol Cell Biochem 390:69–74
CAS
PubMed
Google Scholar
Wang R, Zhang H, Ding W, Fan Z, Ji B, Ding C et al (2020) miR-143 promotes angiogenesis and osteoblast differentiation by targeting HDAC7. Cell Death Dis 11:179
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Tang Y, Liu Y et al (2019) Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif 52:e12669
PubMed
PubMed Central
Google Scholar
Du F, Wu H, Zhou Z, Liu Y (2015) MicroRNA-375 inhibits osteogenic differentiation by targeting runt-related transcription factor 2. Exp Ther Med 10:207–212
CAS
PubMed
PubMed Central
Google Scholar
Lei NB, Liang X, Wang P, Liu Q, Wang WG (2019) Teriparatide alleviates osteoporosis by promoting osteogenic differentiation of hMSCs via miR-375/RUNX2 axis. Eur Rev Med Pharmacol Sci 23:11043–11050
PubMed
Google Scholar
Sun T, Li CT, Xiong L, Ning Z, Leung F, Peng S, Lu WW (2017) miR-375-3p negatively regulates osteogenesis by targeting and decreasing the expression levels of LRP5 and β-catenin. PLoS ONE 12:e0171281
PubMed
PubMed Central
Google Scholar
Liu Y, Wang Y, Zhang Y, Liu Z, Xiang H, Peng X, Chen B, Jia G (2017) Screening for key pathways associated with the development of osteoporosis by bioinformatics analysis. Biomed Res Int 2017:8589347
PubMed
PubMed Central
Google Scholar
Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T et al (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 43:W460–W466
CAS
PubMed
PubMed Central
Google Scholar
Laxman N, Mallmin H, Nilssn O, Kindmark A (2017) miR-203 and miR-320 regulate bone morphogenetic protein-2-induced osteoblast differentiation by targeting distal-less homeobox 5 (Dlx5). Genes 8:4
Google Scholar
Xu X, Jiang H, Li X, Wu P, Liu J, Wang T, Zhou X, Xiong J, Li W (2017) Bioinformatics analysis on the differentiation of bone mesenchymal stem cells into osteoblasts and adipocytes. Mol Med Rep 15:1571–1576
CAS
PubMed
PubMed Central
Google Scholar