Skip to main content

Advertisement

Log in

Chronic Kidney Disease—Mineral and Bone Disorders: Pathogenesis and Management

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The key players of the chronic kidney disease-mineral and bone disorders (CKD-MBD) are calcium, phosphate, PTH, FGF23, and the vitamin D hormonal system. The progressive reduction of kidney function greatly modifies the tightly interrelated mechanisms that control these parameters. As a result, important changes occur in the bone and mineral hormonal axis, leading to changes in bone turnover with relevant consequences in clinical outcomes, such as decrease in bone mass with increased bone fragility and bone fractures and increased vascular and valvular calcification, also with great impact in the cardiovascular outcomes. So far, the knowledge of the mineral and bone disorders in CKD and the increased variety of efficacious therapies should lead to a better prevention and management of CKD-MBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Cannata-Andía et al. [6], A clinician’s guide with permission from Springer, Copyright © 2014.)

Fig. 2

MacMillan Publishers Ltd: Levin et al. [21], Copyright © 2007.)

Fig. 3

Similar content being viewed by others

References

  1. Cannata-Andia J, Rodriguez-Garcia M (2015) Metabolismo Calcio-Fósforo y sus alteraciones. In: Avendaño H (ed) Nefrología Clínica, L. Editorial médicaPanamericana, Madrid, pp 147–160

    Google Scholar 

  2. Jüppner H, Kronenberg HM (2003) Parathyroid hormone. In: Favus MJ (ed) Primer on metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, Washington, pp 117–124

    Google Scholar 

  3. Goodman WG et al (2003) Renal osteodystrophy in adults and children. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, Washington, pp 430–447

    Google Scholar 

  4. Favus MJ, Goltzman D (2013) Regulation of calcium and magnesium. In: Rosen CJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. Wiley-Blackwell, Hoboken, pp 171–179

    Google Scholar 

  5. Vorland CJ et al (2017) Effects of excessive dietary phosphorus intake on bone health. Curr Osteoporos Rep 15(5):473–482

    PubMed  PubMed Central  Google Scholar 

  6. Cannata Andia J et al (2014) Mineral and bone disorders in chronic kidney disease. In: Arici M (ed) Management of chronic kidney disease. Springer, Berlin, pp 223–239

    Google Scholar 

  7. Moe S et al (2006) Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int 69(11):1945–1953

    CAS  PubMed  Google Scholar 

  8. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl 113:S1-130

    Google Scholar 

  9. Spasovski GB (2004) Bone biopsy as a diagnostic tool in the assessment of renal osteodystrophy. Int J Artif Organs 27(11):918–923

    CAS  PubMed  Google Scholar 

  10. Olgaard K, Salusky I, Silver J (2010) The spectrum of mineral and bone disorders in chronic kidney disease. Oxford University Press, Oxford

    Google Scholar 

  11. Evenepoel P, Bover J, Ureña Torres P (2016) Parathyroid hormone metabolism and signaling in health and chronic kidney disease. Kidney Int 90(6):1184–1190

    CAS  PubMed  Google Scholar 

  12. Silver J (2000) Molecular mechanisms of secondary hyperparathyroidism. Nephrol Dial Transpl 15(Suppl 5):2–7

    CAS  Google Scholar 

  13. Centeno PP et al (2019) Phosphate acts directly on the calcium-sensing receptor to stimulate parathyroid hormone secretion. Nat Commun 10(1):4693

    PubMed  PubMed Central  Google Scholar 

  14. Tominaga Y et al (1997) Histopathology, pathophysiology, and indications for surgical treatment of renal hyperparathyroidism. Semin Surg Oncol 13(2):78–86

    CAS  PubMed  Google Scholar 

  15. Lorenzo V et al (1986) Prevalencia de las distintas formas histológicas de osteodistrofia renal, con especial referencia a la osteomalacia. Nefrología 6(2):25–33

    Google Scholar 

  16. Moriniere P et al (1989) Disappearance of aluminic bone disease in a long term asymptomatic dialysis population restricting A1(OH)3 intake: emergence of an idiopathic adynamic bone disease not related to aluminum. Nephron 53(2):93–101

    CAS  PubMed  Google Scholar 

  17. Sherrard DJ et al (1993) The spectrum of bone disease in end-stage renal failure–an evolving disorder. Kidney Int 43(2):436–442

    CAS  PubMed  Google Scholar 

  18. Hercz G et al (1993) Aplastic osteodystrophy without aluminum: the role of “suppressed” parathyroid function. Kidney Int 44(4):860–866

    CAS  PubMed  Google Scholar 

  19. Torres A et al (1995) Bone disease in predialysis, hemodialysis, and CAPD patients: evidence of a better bone response to PTH. Kidney Int 47(5):1434–1442

    CAS  PubMed  Google Scholar 

  20. Ferreira A et al (2008) Effects of sevelamer hydrochloride and calcium carbonate on renal osteodystrophy in hemodialysis patients. J Am Soc Nephrol 19(2):405–412

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Levin A et al (2007) Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int 71(1):31–38

    CAS  PubMed  Google Scholar 

  22. Ketteler M et al (2017) Executive summary of the 2017 KDIGO chronic kidney disease-mineral and bone disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int 92(1):26–36

    PubMed  Google Scholar 

  23. Kidney Disease Outcome Quality Initiative (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39(2 Suppl 1):S1-266

    Google Scholar 

  24. Fernandez-Martin JL et al (2015) Improvement of mineral and bone metabolism markers is associated with better survival in haemodialysis patients: the COSMOS study. Nephrol Dial Transpl 30(9):1542–1551

    CAS  Google Scholar 

  25. Fernandez-Martin JL et al (2019) Serum phosphate optimal timing and range associated with patients survival in haemodialysis: the COSMOS study. Nephrol Dial Transpl 34(4):673–681

    CAS  Google Scholar 

  26. Tentori F et al (2008) Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis 52(3):519–530

    CAS  PubMed  Google Scholar 

  27. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group (2017) Clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl 7(1):1–59

    Google Scholar 

  28. Bover J et al (2021) The non-invasive diagnosis of bone disorders in CKD. Calcif Tissue Int. (in press)

  29. Pimentel A et al (2021) Bone fragility fractures in CKD patients. Calcif Tissue Int. (in press)

  30. Bucur RC et al (2015) Low bone mineral density and fractures in stages 3–5 CKD: an updated systematic review and meta-analysis. Osteoporos Int 26(2):449–458

    CAS  PubMed  Google Scholar 

  31. Silva BC, Bilezikian JP (2015) Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol 22:41–50

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sprague SM et al (2016) Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am J Kidney Dis 67(4):559–566

    PubMed  Google Scholar 

  33. Ritz E et al (2012) Phosphate additives in food–a health risk. Dtsch Arztebl Int 109(4):49–55

    PubMed  PubMed Central  Google Scholar 

  34. Cannata-Andia JB et al (2013) Use of phosphate-binding agents is associated with a lower risk of mortality. Kidney Int 84:998–1008

    CAS  PubMed  Google Scholar 

  35. Mendez-Chacon P et al (2018) Influencia de la sobrecarga de calcio sobre el metabolismo óseo y mineral en 55 centros de hemodiálisis de Lima. Nefrologia 38(3):279–285

    PubMed  Google Scholar 

  36. Alvarez-Hernandez D et al (2005) Long-term response of cultured rat parathyroid glands to calcium and calcitriol: the effect of cryopreservation. J Nephrol 18(2):141–147

    CAS  PubMed  Google Scholar 

  37. Torregrosa JV et al (2011) Spanish Society of Nephrology recommendations for controlling mineral and bone disorder in chronic kidney disease patients (S.E.N.–M.B.D.). Nefrologia 31(Suppl 1):3–32

    PubMed  Google Scholar 

  38. Floege J et al (2011) Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol Dial Transpl 26(6):1948–1955

    CAS  Google Scholar 

  39. Naves-Diaz M et al (2011) Calcium, phosphorus, PTH and death rates in a large sample of dialysis patients from Latin America. The CORES Study. Nephrol Dial Transpl 26(6):1938–1947

    CAS  Google Scholar 

  40. Carrillo-Lopez N et al (2008) Simultaneous changes in the calcium-sensing receptor and the vitamin D receptor under the influence of calcium and calcitriol. Nephrol Dial Transpl 23(11):3479–3484

    CAS  Google Scholar 

  41. Fernandez-Martin JL et al (2013) COSMOS: the dialysis scenario of CKD-MBD in Europe. Nephrol Dial Transpl 28(7):1922–1935

    CAS  Google Scholar 

  42. Rodriguez Garcia M, Naves Diaz M, Cannata Andia JB (2005) Bone metabolism, vascular calcifications and mortality: associations beyond mere coincidence. J Nephrol 18(4):458–463

    CAS  PubMed  Google Scholar 

  43. Roman-Garcia P et al (2011) Vascular calcification in patients with chronic kidney disease: types, clinical impact and pathogenesis. Med Princ Pract 20(3):203–212

    PubMed  Google Scholar 

  44. Lomashvili K, Garg P, O’Neill WC (2006) Chemical and hormonal determinants of vascular calcification in vitro. Kidney Int 69(8):1464–1470

    CAS  PubMed  Google Scholar 

  45. O’Neill WC, Lomashvili KA (2010) Recent progress in the treatment of vascular calcification. Kidney Int 78(12):1232–1239

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Montezano AC et al (2010) Vascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium. Hypertension 56(3):453–462

    CAS  PubMed  Google Scholar 

  47. Mune S et al (2009) Mechanism of phosphate-induced calcification in rat aortic tissue culture: possible involvement of Pit-1 and apoptosis. Clin Exp Nephrol 13(6):571–577

    CAS  PubMed  Google Scholar 

  48. Giachelli CM (2009) The emerging role of phosphate in vascular calcification. Kidney Int 75(9):890–897

    CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Neill WC et al (2011) Treatment with pyrophosphate inhibits uremic vascular calcification. Kidney Int 79(5):512–517

    CAS  PubMed  Google Scholar 

  50. Villa-Bellosta R (2020) New insights into endogenous mechanisms of protection against arterial calcification. Atherosclerosis 306:68–74

    CAS  PubMed  Google Scholar 

  51. Cannata-Andia JB, Roman-Garcia P, Hruska K (2011) The connections between vascular calcification and bone health. Nephrol Dial Transpl 26(11):3429–3436

    Google Scholar 

  52. Rodriguez-Garcia M et al (2009) Vascular calcifications, vertebral fractures and mortality in haemodialysis patients. Nephrol Dial Transpl 24(1):239–246

    Google Scholar 

  53. Asci G et al (2011) The link between bone and coronary calcifications in CKD-5 patients on haemodialysis. Nephrol Dial Transpl 26(3):1010–1015

    Google Scholar 

  54. Carrillo-Lopez N et al (2016) Direct inhibition of osteoblastic Wnt pathway by fibroblast growth factor 23 contributes to bone loss in chronic kidney disease. Kidney Int 90(1):77–89

    CAS  PubMed  Google Scholar 

  55. Carrillo-Lopez N et al (2021) Role of the RANK/RANKL/OPG and Wnt/ß-catenin systems in CKD Bone and cardiovascular disorders. Calcif Tissue Int. (in press)

  56. Luo J et al (2016) LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med 22(5):539–546

    CAS  PubMed  Google Scholar 

  57. London GM et al (2003a) Inflammation, arteriosclerosis, and cardiovascular therapy in hemodialysis patients. Kidney Int Suppl 84:S88-93

    Google Scholar 

  58. London GM et al (2003b) Arterial media calcification in end-stage renal disease: impact on all-cause and cardiovascular mortality. Nephrol Dial Transpl 18(9):1731–1740

    Google Scholar 

  59. Raggi P (2018) Atherosclerosis imaging to refine cardiovascular risk assessment in diabetic patients: computed tomography and positron emission tomography applications. Atherosclerosis 271:77–83

    CAS  PubMed  Google Scholar 

  60. Raggi P, Achenbach S (2010) Computed tomography for atherosclerosis and coronary artery disease imaging. Discov Med 9(45):98–104

    PubMed  Google Scholar 

  61. Bellasi A, Raggi P (2005) Diagnostic and prognostic value of coronary artery calcium screening. Curr Opin Cardiol 20(5):375–380

    PubMed  Google Scholar 

  62. Kauppila LI et al (1997) New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: a 25-year follow-up study. Atherosclerosis 132(2):245–250

    CAS  PubMed  Google Scholar 

  63. Adragao T et al (2004) A simple vascular calcification score predicts cardiovascular risk in haemodialysis patients. Nephrol Dial Transpl 19:1480–1488

    Google Scholar 

  64. Ketteler M, Floege J (2010) Clinical management of vascular and soft tissue calcifications in chronic kidney disease patients. In: Olgaard K, Salusky I, Silver J (eds) The spectrum of mineral and bone disorders in chronic kidney disease. Oxford University Press, Oxford, pp 317–331

    Google Scholar 

  65. Perelló J et al (2020) Mechanism of action of SNF472, a novel calcification inhibitor to treat vascular calcification and calciphylaxis. Br J Pharmacol 177(19):4400–4415

    PubMed  Google Scholar 

  66. Raggi P et al (2020) Slowing progression of cardiovascular calcification with SNF472 in patients on hemodialysis: results of a randomized phase 2b study. Circulation 141(9):728–739

    CAS  PubMed  Google Scholar 

  67. Fusaro M et al (2021) Vitamin K in CKD bone disordes. Calcif Tissue Int. (in press)

  68. Nigwekar SU, Thadhani R, Brandenburg VM (2018) Calciphylaxis. N Engl J Med 378(18):1704–1714

    CAS  PubMed  Google Scholar 

  69. Torregrosa JV et al (2012) Successful treatment of calcific uraemic arteriolopathy with bisphosphonates. Nefrologia 32(3):329–334

    PubMed  Google Scholar 

  70. Torregrosa JV, Cucchiari D (2018) 50 key questions on Calciphylaxis. In: Permanyer P (ed) Chronic kidney disease, Barcelona

  71. Ong S, Coulson IH (2012) Diagnosis and treatment of calciphylaxis. Skinmed 10(3):166–170

    PubMed  Google Scholar 

  72. Singh RP, Derendorf H, Ross EA (2011) Simulation-based sodium thiosulfate dosing strategies for the treatment of calciphylaxis. Clin J Am Soc Nephrol 6(5):1155–1159

    PubMed  PubMed Central  Google Scholar 

  73. Ariyoshi T et al (2006) Effect of etidronic acid on arterial calcification in dialysis patients. Clin Drug Investig 26(4):215–222

    CAS  PubMed  Google Scholar 

  74. Neven EG, De Broe ME, D’Haese PC (2009) Prevention of vascular calcification with bisphosphonates without affecting bone mineralization: a new challenge? Kidney Int 75(6):580–582

    CAS  PubMed  Google Scholar 

  75. Persy V, De Broe M, Ketteler M (2006) Bisphosphonates prevent experimental vascular calcification: treat the bone to cure the vessels? Kidney Int 70(9):1537–1538

    CAS  PubMed  Google Scholar 

  76. Toussaint ND et al (2010) Effect of alendronate on vascular calcification in CKD stages 3 and 4: a pilot randomized controlled trial. Am J Kidney Dis 56(1):57–68

    CAS  PubMed  Google Scholar 

  77. Cannata-Andia JB, Rodriguez Garcia M, Gomez Alonso C (2013) Osteoporosis and adynamic bone in chronic kidney disease. J Nephrol 26(1):73–80

    PubMed  Google Scholar 

  78. World Health Organ (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1–129

    Google Scholar 

  79. Jamal SA et al (2013) Effect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: an updated systematic review and meta-analysis. Lancet 382:1268–1277

    CAS  PubMed  Google Scholar 

  80. Bover J et al (2018) Osteoporosis, bone mineral density and CKD-MBD complex (I): diagnostic considerations. Nefrologia 38(5):476–490

    PubMed  Google Scholar 

  81. Bover J et al (2019) Osteoporosis, bone mineral density and CKD-MBD (II): therapeutic implications. Nefrologia 39(3):227–242

    PubMed  Google Scholar 

  82. Kazama JJ, Iwasaki Y, Fukagawa M (2013) Uremic osteoporosis. Kidney Int Suppl 3(5):446–450

    CAS  Google Scholar 

  83. Evenepoel P et al (2019) European consensus statement on the diagnosis and management of osteoporosis in chronic kidney disease stages 4 to 5D. Nephrol Dial Transpl. https://doi.org/10.1093/ndt/gfaa192

    Article  Google Scholar 

  84. Hernández E et al (2003) Effects of raloxifene on bone metabolism and serum lipids in postmenopausal women on chronic hemodialysis. Kidney Int 63(6):2269–2274

    PubMed  Google Scholar 

  85. Evenepoel P, D’Haese P, Brandenburg V (2015) Sclerostin and DKK1: new players in renal bone and vascular disease. Kidney Int 88(2):235–240

    CAS  PubMed  Google Scholar 

  86. Pereira L, Frazão JM (2020) The bone-vessel axis in chronic kidney disease: an update on biochemical players and its future role in laboratory medicine. Clin Chim Acta 508:221–227

    CAS  PubMed  Google Scholar 

  87. Fuggle NR et al (2020) Assessment of cardiovascular safety of anti-osteoporosis drugs. Drugs 80(15):1537–1552

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Bovijn J et al (2020) Evaluating the cardiovascular safety of sclerostin inhibition using evidence from meta-analysis of clinical trials and human genetics. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aay6570

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Instituto de Salud Carlos III (ISCIII; PI16/00637 and PI19/00532), the ISCIII Retic REDinREN (RD06/0016/1013, RD12/0021/0023, RD16/0009/0017 and RD16/0009/0021), Fondo Europeo de Desarrollo Regional (FEDER), Plan Estatal de I+D+I 2013-2016, Plan de Ciencia, Tecnología e Innovación 2013-2017 y 2018-2022 del Principado de Asturias (GRUPIN14-028, IDI-2018-000152), Fundación Renal Iñigo Álvarez de Toledo (FRIAT), and University of Oviedo. B.M.C. was supporting by a graduate fellowship from the Gobierno del Principado de Asturias (“Severo Ochoa” program), J.M.V. by a graduate fellowship from the Ministerio de Ciencia, Innovación y Universidades (FPU program), J.R.C. by postdoctoral contracts from the “Juan de la Cierva” (IJCI-2017-32070, Ministerio de Ciencia e Innovación, Spain) and “Sara Borrell” programs (CD19/00120, from ISCIII), C.A.M. by REDinREN-FINBA (RD16/0009/0017) and N.C.L. has been supported by FINBA-GRUPIN14-028 and IDI-2018-000152.

Author information

Authors and Affiliations

Authors

Contributions

JCA and NCL had the idea for the article, BMC and JMV performed the literature search and data analysis, NCL, CAM and JCA drafted the article and JCA, JRC, JBF, CAM and NCL critically revised the article.

Corresponding authors

Correspondence to Jorge B. Cannata-Andía or Natalia Carrillo-López.

Ethics declarations

Conflicts of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cannata-Andía, J.B., Martín-Carro, B., Martín-Vírgala, J. et al. Chronic Kidney Disease—Mineral and Bone Disorders: Pathogenesis and Management. Calcif Tissue Int 108, 410–422 (2021). https://doi.org/10.1007/s00223-020-00777-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-020-00777-1

Keywords

Navigation