Calcified Tissue International

, Volume 102, Issue 6, pp 705–719 | Cite as

Effect of Strontium Ranelate on the Muscle and Vertebrae of Ovariectomized Rats

  • D. Saul
  • B. Harlas
  • A. Ahrabi
  • R. L. Kosinsky
  • D. B. Hoffmann
  • M. Wassmann
  • R. Wigger
  • K. O. Böker
  • S. Sehmisch
  • M. Komrakova
Original Research


Osteoporosis is often accompanied by sarcopenia. The effect of strontium ranelate (SR) on muscle tissue has not been investigated sufficiently. In this study, the effect of different SR treatments on muscle was studied. Additionally, the lumbar vertebrae were analyzed. Three-month-old female rats were divided into five groups (n = 12): Group 1: untreated (NON-OVX); Group 2: ovariectomized and left untreated (OVX); Group 3: SR after OVX until the study ended (13 weeks, SR prophylaxis and therapy = pr+th); Group 4: OVX and SR for 8 weeks (SR prophylaxis = pr); Group 5: SR for 5 weeks from the 8 week after OVX (SR therapy = SR th). SR was applied in food (630 mg/kg body weight). The size of muscle fibers, capillary density, metabolic enzymes, and mRNA expression were assessed in soleus, gastrocnemius, and longissimus muscles. The vertebral bodies underwent micro-CT, biomechanical, and ashing analyses. In general, SR did not alter the muscle histological parameters. The changes in fiber size and capillary ratio were related to the body weight. Myostatin mRNA was decreased in Sr pr+th; protein expression was not changed. SR th led to increase in mRNA expression of vascular endothelial growth factor (Vegf-B). In lumbar spine, SR pr+th enhanced biomechanical properties, bone mineral density, trabecular area, density, and thickness and cortical density. The reduced calcium/phosphate ratio in the SR pr+th group indicates the replacement of calcium by strontium ions. SR has no adverse effects on muscle tissue and it shows a favorable time-dependent effect on vertebrae. A functional analysis of muscles could verify these findings.


Strontium ranelate Osteoporosis Muscle Ovariectomized rat 



We wish to express our gratitude to Elsbeth Bonhoff Stiftung for providing the financial support for the present study (Grant N70). Moreover, we are grateful to R. Wigger, R. Castro-Machguth, and A. Witt for the technical support they provided.

Compliance with Ethical Standards

Conflict of interest

Authors D. Saul, B. Harlas, A. Ahrabi, R. L. Kosinsky, D. B. Hoffmann, M. Wassmann, R. Wigger, K. O. Böker, S. Sehmisch, and M. Komrakova declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Supplementary material

223_2017_374_MOESM1_ESM.eps (3.4 mb)
ATPase analysis of M. gastrocnemius, M. longissimus and M. soleus. area: cross sectional area of muscle fibers; dia: mean diameter of muscle fibers; oxi: oxidative and intermittent muscle fibers (I and IIa); gly: glycolytic muscle fibers (IIb). Data corrected by body weight (g). A,B, G-J,: Dunn´s test; C-F: Tukey-test. *p < 0.05, **p < 0.01, ***p < 0.001. (EPS 3448 KB)
223_2017_374_MOESM2_ESM.eps (3.2 mb)
Activity of lactate dehydrogenase (LDH), citrate synthase (CS) and Complex I was measured in M. gastrocnemius, M. longissimus and M. soleus. There were no significant differences between the groups (p > 0.05). A, H: Dunn´s test; B-G, I: Tukey-test (EPS 3226 KB)


  1. 1.
    Satpathy S, Patra A, Ahirwar B (2015) Experimental techniques for screening of antiosteoporotic activity in postmenopausal osteoporosis. J Complement Integr Med 12(4):251–266. CrossRefPubMedGoogle Scholar
  2. 2.
    Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–1733. CrossRefPubMedGoogle Scholar
  3. 3.
    ROLLAND Y, CZERWINSKI S, van KAN, GA et al (2008) Sarcopenia: Its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging 12(7):433–450CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bruyère O, Beaudart C, Locquet M et al (2016) Sarcopenia as a public health problem. Eur Geriatric Med 7(3):272–275. CrossRefGoogle Scholar
  5. 5.
    Kanis JA, McCloskey EV, Johansson H et al (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24(1):23–57. CrossRefPubMedGoogle Scholar
  6. 6.
    DVO (2014) OSTEOPOROSE bei Männern ab dem 60. Lebensjahr und bei postmenopausalen Frauen: Leitlinie des Dachverbands der Deutschsprachigen Wissenschaftlichen Osteologischen Gesellschaften e.VGoogle Scholar
  7. 7.
    Reginster JY, Seeman E, Vernejoul MC de et al (2005) Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of Peripheral Osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90(5):2816–2822. CrossRefPubMedGoogle Scholar
  8. 8.
    Kanis JA, Johansson H, Oden A et al (2011) A meta-analysis of the effect of strontium ranelate on the risk of vertebral and non-vertebral fracture in postmenopausal osteoporosis and the interaction with FRAX((R)). Osteoporos Int 22(8):2347–2355. CrossRefPubMedGoogle Scholar
  9. 9.
    Meunier PJ, Roux C, Seeman E et al (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350(5):459–468. CrossRefPubMedGoogle Scholar
  10. 10.
    Reginster JY, Brandi ML, Cannata-Andia J et al (2015) The position of strontium ranelate in today’s management of osteoporosis. Osteoporos Int 26(6):1667–1671. CrossRefPubMedGoogle Scholar
  11. 11.
    Reid IR (2015) Efficacy, effectiveness and side effects of medications used to prevent fractures. J Intern Med 277(6):690–706. CrossRefPubMedGoogle Scholar
  12. 12.
    Reginster JY (2014) Cardiac concerns associated with strontium ranelate. Expert Opin Drug Saf 13(9):1209–1213. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Maeda SS, Lazaretti-Castro M (2014) An overview on the treatment of postmenopausal osteoporosis. Arq Bras Endocrinol Metabol 58(2):162–171CrossRefPubMedGoogle Scholar
  14. 14.
    Bakker AD, Zandieh-Doulabi B, Klein-Nulend J (2013) Strontium ranelate affects signaling from mechanically-stimulated osteocytes towards osteoclasts and osteoblasts. Bone 53(1):112–119. CrossRefPubMedGoogle Scholar
  15. 15.
    Li YF, Luo E, Feng G et al (2010) Systemic treatment with strontium ranelate promotes tibial fracture healing in ovariectomized rats. Osteoporos Int 21(11):1889–1897. CrossRefPubMedGoogle Scholar
  16. 16.
    Ozturan KE, Demir B, Yucel I et al (2011) Effect of strontium ranelate on fracture healing in the osteoporotic rats. J Orthop Res 29(1):138–142. CrossRefPubMedGoogle Scholar
  17. 17.
    Ammann P, Shen V, Robin B et al (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19(12):2012–2020. CrossRefPubMedGoogle Scholar
  18. 18.
    Komrakova M et al (2015) The impact of strontium ranelate on metaphyseal bone healing in ovariectomized rats. Calcif Tissue Int 97(4):391–401. CrossRefPubMedGoogle Scholar
  19. 19.
    Komrakova M, Hoffmann DB, Nuehnen V et al (2016) The effect of vibration treatments combined with teriparatide or strontium ranelate on bone healing and muscle in ovariectomized rats. Calcif Tissue Int 99(4):408–422. CrossRefPubMedGoogle Scholar
  20. 20.
    Molinuevo MS, Fernandez JM, Cortizo AM et al (2017) Advanced glycation end products and strontium ranelate promote osteogenic differentiation of vascular smooth muscle cells in vitro: preventive role of vitamin D. Mol Cell Endocrinol 450:94–104. CrossRefPubMedGoogle Scholar
  21. 21.
    Servier Laboratories Limited (2016) Protelos: summary of product characteristics (SPC)–(eMC). Accessed 24 Nov 2016
  22. 22.
    Cunha-Henriques S, Costa-Paiva L, Pinto-Neto AM et al (2011) Postmenopausal women with osteoporosis and musculoskeletal status: a comparative cross-sectional study. J Clin Med Res 3(4):168–176. PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kaji H (2013) Linkage between muscle and bone: common catabolic signals resulting in osteoporosis and sarcopenia. Curr Opin Clin Nutr Metab Care 16(3):272–277. CrossRefPubMedGoogle Scholar
  24. 24.
    Sjoblom S, Suuronen J, Rikkonen T et al (2013) Relationship between postmenopausal osteoporosis and the components of clinical sarcopenia. Maturitas 75(2):175–180. CrossRefPubMedGoogle Scholar
  25. 25.
    He H, Liu Y, Tian Q et al (2015) Relationship of sarcopenia and body composition with osteoporosis. Osteoporos Int. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Iwasa T, Matsuzaki T, Tungalagsuvd A et al (2014) Effects of ovariectomy on the inflammatory responses of female rats to the central injection of lipopolysaccharide. J Neuroimmunol 277(1–2):50–56. CrossRefPubMedGoogle Scholar
  27. 27.
    Habermann B, Kafchitsas K, Olender G et al (2010) Strontium ranelate enhances callus strength more than PTH 1–34 in an osteoporotic rat model of fracture healing. Calcif Tissue Int 86(1):82–89. CrossRefPubMedGoogle Scholar
  28. 28.
    Saul D, Kling JH, Kosinsky RL et al (2016) Effect of the lipoxygenase inhibitor baicalein on muscles in ovariectomized rats. J Nutr Metab. PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Komrakova M, Krischek C, Wicke M et al (2011) Influence of intermittent administration of parathyroid hormone on muscle tissue and bone healing in orchiectomized rats or controls. J Endocrinol 209(1):9–19. CrossRefPubMedGoogle Scholar
  30. 30.
    Andersen P (1975) Capillary density in skeletal muscle of man. Acta Physiol Scand 95(2):203–205. CrossRefPubMedGoogle Scholar
  31. 31.
    Komrakova M, Werner C, Wicke M et al (2009) Effect of daidzein, 4-methylbenzylidene camphor or estrogen on gastrocnemius muscle of osteoporotic rats undergoing tibia healing period. J Endocrinol 201(2):253–262. CrossRefPubMedGoogle Scholar
  32. 32.
    Horák V (1983) A successive histochemical staining for succinate dehydrogenase and ?: Reversed?-ATPase in a single section for the skeletal muscle fibre typing. Histochemistry 78(4):545–553. CrossRefPubMedGoogle Scholar
  33. 33.
    Faloona GR, Srere PA (1969) Escherichia coli citrate synthase: purification and the effect of potassium on some properties. Biochemistry 8(11):4497–4503. CrossRefPubMedGoogle Scholar
  34. 34.
    Hatefi Y, Stiggall DL (1978) [2] Preparation and properties of NADH: Cytochrome c oxidoreductase (complex I–III). In: Fleischer S (ed) Biological oxidations: mitochondrial and microbial systems, vol 53. Academy Press, New York, pp 5–10Google Scholar
  35. 35.
    Spandidos A, Wang X, Wang H et al (2010) PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Res 38(Database issue):D792–D799. CrossRefPubMedGoogle Scholar
  36. 36.
    Spandidos A, Wang X, Wang H et al (2008) A comprehensive collection of experimentally validated primers for polymerase chain reaction quantitation of murine transcript abundance. BMC Genome 9:633. CrossRefGoogle Scholar
  37. 37.
    Wang X, Seed B (2003) A PCR primer bank for quantitative gene expression analysis. Nucleic Acids Res 31(24):e154CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. CrossRefPubMedGoogle Scholar
  39. 39.
    Sehmisch S, Erren M, Rack T et al (2009) Short-term effects of parathyroid hormone on rat lumbar vertebrae. Spine 34(19):2014–2021. CrossRefPubMedGoogle Scholar
  40. 40.
    Sehmisch S, Erren M, Kolios L et al (2010) Effects of isoflavones equol and genistein on bone quality in a rat osteopenia model. Phytother Res 24(Suppl 2): S168–S174. CrossRefPubMedGoogle Scholar
  41. 41.
    Hoffmann DB, Griesel MH, Brockhusen B et al. (2016) Effects of 8-prenylnaringenin and whole-body vibration therapy on a rat model of osteopenia. J Nutr Metab. CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Parfitt A, Drezner MK, Glorieux FH et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2(6):595–610. CrossRefPubMedGoogle Scholar
  43. 43.
    Bouxsein ML, Boyd SK, Christiansen BA et al (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25(7):1468–1486. CrossRefPubMedGoogle Scholar
  44. 44.
    Sehmisch S, Komrakova M, Kottwitz L et al (2015) Effects of urocortin on spine? Osteologie 24(2):99–106CrossRefGoogle Scholar
  45. 45.
    Komrakova M, Stuermer EK, Sturm A, Schmelz U, Tezval M, Stuermer KM, Sehmisch S (2012) Efficiency of 48 h vs. 24 h Injection of parathyroid hormone for amelioration of osteopenic spine properties in male rats. TOBONEJ 4(1): 20–26. CrossRefGoogle Scholar
  46. 46.
    Dachverband OeV (2014) Leitlinie des Dachverbands der Deutschsprachigen Wissenschaftlichen Osteologischen Gesellschaften e.V.: Prophylaxe, Diagnostik und Therapie der OSTEOPOROSE bei Männern ab dem 60. Lebensjahr und bei postmenopausalen Frauen. Accessed 10 Dec 2017
  47. 47.
    Cortet B (2011) Use of strontium as a treatment method for osteoporosis. Curr Osteoporos Rep 9(1):25–30. CrossRefPubMedGoogle Scholar
  48. 48.
    Iniguez-Ariza NM, Clarke BL (2015) Bone biology, signaling pathways, and therapeutic targets for osteoporosis. Maturitas 82(2):245–255. CrossRefPubMedGoogle Scholar
  49. 49.
    Abboskhujaeva LS, Ismailov SI, Alikhanova NM (2014) Efficacy of strontium ranelate in combination with a D-hormone analog for the treatment of postmenopausal osteoporosis. Drugs R D 14(4):315–324. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Nielsen SP, Slosman D, Sorensen OH et al (1999) Influence of strontium on bone mineral density and bone mineral content measurements by dual X-ray absorptiometry. J Clin Densitom 2(4):371–379CrossRefPubMedGoogle Scholar
  51. 51.
    Reginster JY, Kaufman JM, Goemaere S et al (2012) Maintenance of antifracture efficacy over 10 years with strontium ranelate in postmenopausal osteoporosis. Osteoporos Int 23(3):1115–1122. CrossRefPubMedGoogle Scholar
  52. 52.
    Hegde V, Jo JE, Andreopoulou P et al (2016) Effect of osteoporosis medications on fracture healing. Osteoporos Int 27(3):861–871. CrossRefPubMedGoogle Scholar
  53. 53.
    Tarantino U, Celi M, Saturnino L et al (2010) Strontium Ranelate and bone healing: report of two cases. Clin Cases Miner Bone Metab 7(1):65–68PubMedPubMedCentralGoogle Scholar
  54. 54.
    Fuchs RK, Allen MR, Condon KW et al (2008) Strontium ranelate does not stimulate bone formation in ovariectomized rats. Osteoporos Int 19(9):1331–1341. CrossRefPubMedGoogle Scholar
  55. 55.
    Bain SD, Jerome C, Shen V et al (2009) Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int 20(8):1417–1428. CrossRefPubMedGoogle Scholar
  56. 56.
    Dahl SG, Allain P, Marie PJ et al (2001) Incorporation and distribution of strontium in bone. Bone 28(4):446–453CrossRefPubMedGoogle Scholar
  57. 57.
    Deeks ED, Dhillon S (2010) Spotlight on strontium ranelate: in postmenopausal osteoporosis. Drugs Aging 27(9):771–773. CrossRefPubMedGoogle Scholar
  58. 58.
    Body JJ, Bergmann P, Boonen S et al. (2012) Extraskeletal benefits and risks of calcium, vitamin D and anti-osteoporosis medications. Osteoporos Int (23 Suppl 1): S1–S23.
  59. 59.
    EMEA (2005) EPAR: scientific discussion: european medicines agency. Accessed 10 Dec 2017
  60. 60.
    Tsai W-JA, McCormick KM, Brazeau DA et al (2007) Estrogen effects on skeletal muscle insulin-like growth factor 1 and myostatin in ovariectomized rats. Exp Biol Med 232(10):1314–1325. CrossRefGoogle Scholar
  61. 61.
    Velloso CP (2008) Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol 154(3):557–568. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Kirk S, Oldham J, Kambadur R et al (2000) Myostatin regulation during skeletal muscle regeneration. J Cell Physiol 184(3):356–363CrossRefPubMedGoogle Scholar
  63. 63.
    Roth SM, Walsh S (2004) Myostatin: a therapeutic target for skeletal muscle wasting. Curr Opin Clin Nutr Metab Care 7(3):259–263CrossRefPubMedGoogle Scholar
  64. 64.
    Jasuja R, LeBrasseur NK (2014) Regenerating skeletal muscle in the face of aging and disease. Am J Phys Med Rehabil 93(11 Suppl 3):S88–S96. CrossRefPubMedGoogle Scholar
  65. 65.
    Wagner PD (2011) The critical role of VEGF in skeletal muscle angiogenesis and blood flow. Biochem Soc Trans 39(6):1556–1559. CrossRefPubMedGoogle Scholar
  66. 66.
    Hoier B, Hellsten Y (2014) Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation 21(4):301–314. CrossRefPubMedGoogle Scholar
  67. 67.
    Ammann P, Badoud I, Barraud S et al (2007) Strontium ranelate treatment improves trabecular and cortical intrinsic bone tissue quality, a determinant of bone strength. J Bone Miner Res 22(9):1419–1425. CrossRefPubMedGoogle Scholar
  68. 68.
    Chen B, Li Y, Yang X et al (2013) Comparable effects of alendronate and strontium ranelate on femur in ovariectomized rats. Calcif Tissue Int 93(5):481–486. CrossRefPubMedGoogle Scholar
  69. 69.
    Vegger JB, Bruel A, Sorensen TG et al (2016) Systemic Treatment with strontium ranelate does not influence the healing of femoral mid-shaft defects in rats. Calcif Tissue Int 98(2):206–214. CrossRefPubMedGoogle Scholar
  70. 70.
    Hoffmann DB, Sehmisch S, Am, Hofmann et al (2017) Comparison of parathyroid hormone and strontium ranelate in combination with whole-body vibration in a rat model of osteoporosis. J Bone Miner Metab 35(1):31–39. CrossRefPubMedGoogle Scholar
  71. 71.
    Boyd SK, Szabo E, Ammann P (2011) Increased bone strength is associated with improved bone microarchitecture in intact female rats treated with strontium ranelate: a finite element analysis study. Bone 48(5):1109–1116. CrossRefPubMedGoogle Scholar
  72. 72.
    Rizzoli R, Laroche M, Krieg MA et al (2010) Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis. Rheumatol Int 30(10):1341–1348. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Wu Y, Adeeb SM, Duke MJ et al (2013) Compositional and material properties of rat bone after bisphosphonate and/or strontium ranelate drug treatment. J Pharm Pharm Sci 16(1):52–64CrossRefPubMedGoogle Scholar
  74. 74.
    Oliveira JP, Querido W, Caldas RJ et al (2012) Strontium is incorporated in different levels into bones and teeth of rats treated with strontium ranelate. Calcif Tissue Int 91(3):186–195. CrossRefPubMedGoogle Scholar
  75. 75.
    Li C, Paris O, Siegel S et al (2010) Strontium is incorporated into mineral crystals only in newly formed bone during strontium ranelate treatment. J Bone Miner Res 25(5):968–975. PubMedCrossRefGoogle Scholar
  76. 76.
    Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15(3):175–191CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • D. Saul
    • 1
  • B. Harlas
    • 1
  • A. Ahrabi
    • 1
  • R. L. Kosinsky
    • 2
  • D. B. Hoffmann
    • 1
  • M. Wassmann
    • 3
  • R. Wigger
    • 4
  • K. O. Böker
    • 1
  • S. Sehmisch
    • 1
  • M. Komrakova
    • 1
  1. 1.Department of Trauma Surgery, Orthopaedics and Plastic SurgeryUniversity Medical Center GoettingenGöettingenGermany
  2. 2.Department of General, Visceral and Pediatric SurgeryUniversity Medical Center GoettingenGöettingenGermany
  3. 3.Medical Institute of General Hygiene and Environmental HealthUniversity of GoettingenGöettingenGermany
  4. 4.Department of Animal ScienceUniversity of GoettingenGöettingenGermany

Personalised recommendations