Skip to main content

Advertisement

Log in

Microarray Profiling of Diaphyseal Bone of Rats Suffering from Hypervitaminosis A

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Vitamin A is the only known compound that produces spontaneous fractures in rats. In an effort to resolve the molecular mechanism behind this effect, we fed young male rats high doses of vitamin A and performed microarray analysis of diaphyseal bone with and without marrow after 1 week, i.e., just before the first fractures appeared. Of the differentially expressed genes in cortical bone, including marrow, 98% were upregulated. In contrast, hypervitaminotic cortical bone without marrow showed reduced expression of 37% of differentially expressed genes. Gene ontology (GO) analysis revealed that only samples containing bone marrow were associated with a GO term, which principally represented extracellular matrix. This is consistent with the histological findings of increased endosteal/marrow osteoblast number. Fourteen genes, including Cyp26b1, which is known to be upregulated by vitamin A, were selected and verified by real-time PCR. In addition, immunohistochemical staining of bone sections confirmed that the bone-specific molecule osteoadherin was upregulated. Further analysis of the major gene-expression changes revealed apparent augmented Wnt signaling in the sample containing bone marrow but reduced Wnt signaling in cortical bone. Moreover, induced expression of hypoxia-associated genes was found only in samples containing bone marrow. Together, these results highlight the importance of compartment-specific analysis of bone and corroborate previous observations of compartment-specific effects of vitamin A, with reduced activity in cortical bone but increased activity in the endosteal/marrow compartment. We specifically identify potential key osteoblast-, Wnt signaling-, and hypoxia-associated genes in the processes leading to spontaneous fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Collazo J, Rodriguez J (1933) Hypervitaminose II, exophtalmus und spontanfrakturen. Klin Wochschr 12:1768–1771

    Article  CAS  Google Scholar 

  2. Bomskov C, Seeman G (1933) Uber eine wirkung des vitamin A auf den mineralhaushalt. Z Ges Exp Med 89:771–779

    Article  CAS  Google Scholar 

  3. Strauss K (1934) Beobachtungen bei hypervitaminose A. Anat U Allgem Pathol 94:345–352

    CAS  Google Scholar 

  4. Moore T, Wang YL (1945) Hypervitaminosis A. Biochem J 39:222–228

    CAS  Google Scholar 

  5. Nieman C, Obbink H (1954) The biochemistry and pathology of hypervitaminosis A. Vitam Horm 12:69–99

    Article  PubMed  CAS  Google Scholar 

  6. Rodahl K (1950) Hypervitaminosis in the rat. J Nutr 41:399–421

    PubMed  CAS  Google Scholar 

  7. Johansson S, Lind PM, Hakansson H, Oxlund H, Orberg J et al (2002) Subclinical hypervitaminosis A causes fragile bones in rats. Bone 31:685–689

    Article  PubMed  CAS  Google Scholar 

  8. Hixson EJ, Burdeshaw JA, Denine EP, Harrison SD Jr (1979) Comparative subchronic toxicity of all-trans- and 13-cis-retinoic acid in Sprague-Dawley rats. Toxicol Appl Pharmacol 47:359–365

    Article  PubMed  CAS  Google Scholar 

  9. Kurtz PJ, Emmerling DC, Donofrio DJ (1984) Subchronic toxicity of all-trans-retinoic acid and retinylidene dimedone in Sprague-Dawley rats. Toxicology 30:115–124

    Article  PubMed  CAS  Google Scholar 

  10. Forsyth KS, Watson RR, Gensler HL (1989) Osteotoxicity after chronic dietary administration of 13-cis-retinoic acid, retinyl palmitate or selenium in mice exposed to tumor initiation and promotion. Life Sci 45:2149–2156

    Article  PubMed  CAS  Google Scholar 

  11. Teelmann K (1981) Experimental toxicology of the aromatic retinoid Ro 10-9359 (Etretinate). In: Orfanos C, Braun-Falco O, Farber E, Grupper C, Polano M, Schuppli R (eds) Retinoids: advances in basic research and therapy. Springer-Verlag, Berlin, pp 41–47

    Google Scholar 

  12. Kneissel M, Studer A, Cortesi R, Susa M (2005) Retinoid-induced bone thinning is caused by subperiosteal osteoclast activity in adult rodents. Bone 36:202–214

    Article  PubMed  CAS  Google Scholar 

  13. Lind T, Lind PM, Jacobson A, Hu L, Sundqvist A et al (2011) High dietary intake of retinol leads to bone marrow hypoxia and diaphyseal endosteal mineralization in rats. Bone 48:496–506

    Article  PubMed  CAS  Google Scholar 

  14. Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 98:31–36

    Article  PubMed  CAS  Google Scholar 

  15. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ et al (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    Article  PubMed  Google Scholar 

  16. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3

  17. Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420

    Chapter  Google Scholar 

  18. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  19. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  20. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  21. Hollberg K, Hultenby K, Hayman A, Cox T, Andersson G (2002) Osteoclasts from mice deficient in tartrate-resistant acid phosphatase have altered ruffled borders and disturbed intracellular vesicular transport. Exp Cell Res 279:227–238

    Article  PubMed  CAS  Google Scholar 

  22. Wendel M, Sommarin Y, Heinegård D (1998) Bone matrix proteins: isolation and characterization of a novel cell-binding keratan sulfate proteoglycan (osteoadherin) from bovine bone. J Cell Biol 141:839–847

    Article  PubMed  CAS  Google Scholar 

  23. Kamiya N, Kaartinen VM, Mishina Y (2011) Loss-of-function of ACVR1 in osteoblasts increases bone mass and activates canonical Wnt signaling through suppression of Wnt inhibitors SOST and DKK1. Biochem Biophys Res Commun 414:326–330

    Article  PubMed  CAS  Google Scholar 

  24. Zhao X, Brade T, Cunningham TJ, Duester G (2010) Retinoic acid controls expression of tissue remodeling genes Hmgn1 and Fgf18 at the digit–interdigit junction. Dev Dyn 239:665–671

    Article  PubMed  CAS  Google Scholar 

  25. Shimono K, Tung WE, Macolino C, Chi AH, Didizian JH et al (2011) Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-γ agonists. Nat Med 17:454–460

    Article  PubMed  CAS  Google Scholar 

  26. Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26:229–238

    Article  PubMed  CAS  Google Scholar 

  27. Easwaran V, Pishvaian M, Salimuddin, Byers S (1999) Cross-regulation of beta-catenin-LEF/TCF and retinoid signaling pathways. Curr Biol 9:1415–1418

    Article  PubMed  CAS  Google Scholar 

  28. Engberg N, Kahn M, Petersen DR, Hansson M, Serup P (2010) Retinoic acid synthesis promotes development of neural progenitors from mouse embryonic stem cells by suppressing endogenous, Wnt-dependent nodal signaling. Stem Cells 28:1498–1509

    Article  PubMed  CAS  Google Scholar 

  29. Kato M, Patel MS, Levasseur R, Lobov I, Chang BH et al (2002) Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 157:303–314

    Article  PubMed  CAS  Google Scholar 

  30. Fujino T, Asaba H, Kang MJ, Ikeda Y, Sone H et al (2003) Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc Natl Acad Sci USA 100:229–234

    Article  PubMed  CAS  Google Scholar 

  31. Kramer I, Halleux C, Keller H, Pegurri M, Gooi JH et al (2010) Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol 30:3071–3085

    Article  PubMed  CAS  Google Scholar 

  32. Elizalde C, Campa VM, Caro M, Schlangen K, Aransay AM et al (2011) Distinct roles for Wnt-4 and Wnt-11 during retinoic acid-induced neuronal differentiation. Stem Cells 29:141–153

    Article  PubMed  CAS  Google Scholar 

  33. Gong Y, Slee RB, Fukai N, Rawadi G, Roman–Roman S et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107:513–523

    Article  PubMed  CAS  Google Scholar 

  34. Chang J, Sonoyama W, Wang Z, Jin Q, Zhang C et al (2007) Noncanonical Wnt-4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J Biol Chem 282:30938–30948

    Article  PubMed  CAS  Google Scholar 

  35. Li X, Liu H, Qin L, Tamasi J, Bergenstock M et al (2007) Determination of dual effects of parathyroid hormone on skeletal gene expression in vivo by microarray and network analysis. J Biol Chem 282:33086–33097

    Article  PubMed  CAS  Google Scholar 

  36. Cho SW, Her SJ, Sun HJ, Choi OK, Yang JY et al (2008) Differential effects of secreted frizzled-related proteins (sFRPs) on osteoblastic differentiation of mouse mesenchymal cells and apoptosis of osteoblasts. Biochem Biophys Res Commun 367:399–405

    Article  PubMed  CAS  Google Scholar 

  37. Sathi GA, Inoue M, Harada H, Rodriguez AP, Tamamura R et al (2009) Secreted frizzled related protein (sFRP)-2 inhibits bone formation and promotes cell proliferation in ameloblastoma. Oral Oncol 45:856–860

    Article  PubMed  CAS  Google Scholar 

  38. von Marschall Z, Fisher LW (2010) Secreted frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling. Biochem Biophys Res Commun 400:299–304

    Article  Google Scholar 

  39. Kobayashi K, Luo M, Zhang Y, Wilkes DC, Ge G et al (2009) Secreted frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol 11:46–55

    Article  PubMed  CAS  Google Scholar 

  40. Railo A, Pajunen A, Itäranta P, Naillat F, Vuoristo J et al (2009) Genomic response to Wnt signalling is highly context-dependent—evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets. Exp Cell Res 315:2690–2704

    Article  PubMed  CAS  Google Scholar 

  41. Kalantari F, Miao D, Emadali A, Tzimas GN, Goltzman D et al (2007) Cellular and molecular mechanisms of abnormal calcification following ischemia-reperfusion injury in human liver transplantation. Mod Pathol 20:357–366

    Article  PubMed  CAS  Google Scholar 

  42. Ingber D, Folkman J (1988) Inhibition of angiogenesis through modulation of collagen metabolism. Lab Investig 59:44–51

    PubMed  CAS  Google Scholar 

  43. Tallman MS, Andersen JW, Schiffer CA, Appelbaum FR, Feusner JH et al (2000) Clinical description of 44 patients with acute promyelocytic leukemia who developed the retinoic acid syndrome. Blood 95:90–95

    PubMed  CAS  Google Scholar 

  44. Zhang E, Jiang B, Yokochi A, Maruyama J, Mitani Y et al (2010) Effect of all-trans-retinoic acid on the development of chronic hypoxia-induced pulmonary hypertension. Circ J 74:1696–1703

    Article  PubMed  CAS  Google Scholar 

  45. Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436:193–200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Uppsala Array Platform for their technical assistance and Valeria Giandomenico for critical reading of the manuscript. This work was supported by the Swedish Society of Medicine (T. L.) and the Swedish Medical Research Council (H. M., G. A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lind.

Additional information

The authors have stated that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 34 kb)

Supplementary material 2 (XLS 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lind, T., Hu, L., Lind, P.M. et al. Microarray Profiling of Diaphyseal Bone of Rats Suffering from Hypervitaminosis A. Calcif Tissue Int 90, 219–229 (2012). https://doi.org/10.1007/s00223-011-9561-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-011-9561-6

Keywords

Navigation