Skip to main content

Advertisement

Log in

A Polymorphism in a Gene Encoding Perilipin 4 Is Associated with Height but not with Bone Measures in Individuals from the Framingham Osteoporosis Study

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

There is increasing interest in identifying new pathways and candidate genes that confer susceptibility to osteoporosis. There is evidence that adipogenesis and osteogenesis may be related, including a common bone marrow progenitor cell for both adipocytes and osteoblasts. Perilipin 1 (PLIN1) and Perilipin 4 (PLIN4) are members of the PATS family of genes and are involved in lipolysis of intracellular lipid deposits. A previous study reported gender-specific associations between one polymorphism of PLIN1 and bone mineral density (BMD) in a Japanese population. We hypothesized that polymorphisms in PLIN1 and PLIN4 would be associated with bone measures in adult Caucasian participants of the Framingham Osteoporosis Study (FOS). We genotyped 1,206 male and 1,445 female participants of the FOS for four single-nucleotide polymorphism (SNPs) in PLIN1 and seven SNPs in PLIN4 and tested for associations with measures of BMD, bone ultrasound, hip geometry, and height. We found several gender-specific significant associations with the measured traits. The association of PLIN4 SNP rs8887, G>A with height in females trended toward significance after simulation testing (adjusted P = 0.07) and remained significant after simulation testing in the combined-sex model (adjusted P = 0.033). In a large study sample of men and women, we found a significant association between one SNP in PLIN4 and height but not with bone traits, suggesting that PATS family genes are not important in the regulation of bone. Identification of genes that influence human height may lead to a better understanding of the processes involved in growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Department of Health and Human Services, Office of the Surgeon General (2004) Bone health and osteoporosis: a report of the surgeon general. DHHS, Rockland, MD

  2. Shen H, Recker RR, Deng HW (2003) Molecular and genetic mechanisms of osteoporosis: implication for treatment. Curr Mol Med 3:737–757

    Article  PubMed  CAS  Google Scholar 

  3. Ioannidis JP, Ng MY, Sham PC, Zintzaras E, Lewis CM, Deng HW, Econs MJ, Karasik D, Devoto M, Kammerer CM, Spector T, Andrew T, Cupples LA, Duncan EL, Foroud T, Kiel DP, Koller D, Langdahl B, Mitchell BD, Peacock M, Recker R, Shen H, Sol-Church K, Spotila LD, Uitterlinden AG, Wilson SG, Kung AW, Ralston SH (2007) Meta-analysis of genome-wide scans provides evidence for sex- and site-specific regulation of bone mass. J Bone Miner Res 22:173–183

    Article  PubMed  CAS  Google Scholar 

  4. Flicker L, Faulkner KG, Hopper JL, Green RM, Kaymacki B, Nowson CA, Young D, Wark JD (1996) Determinants of hip axis length in women aged 10–89 years: a twin study. Bone 18:41–45

    Article  PubMed  CAS  Google Scholar 

  5. Chinappen-Horsley U, Blake GM, Fogelman I, Kato B, Ahmadi KR, Spector TD (2008) Quantitative trait loci for bone lengths on chromosome 5 using dual energy X-Ray absorptiometry imaging in the Twins UK cohort. PLoS ONE 3:e1752

    Article  PubMed  Google Scholar 

  6. Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, Freathy RM, Perry JR, Stevens S, Hall AS, Samani NJ, Shields B, Prokopenko I, Farrall M, Dominiczak A, Johnson T, Bergmann S, Beckmann JS, Vollenweider P, Waterworth DM, Mooser V, Palmer CN, Morris AD, Ouwehand WH, Zhao JH, Li S, Loos RJ, Barroso I, Deloukas P, Sandhu MS, Wheeler E, Soranzo N, Inouye M, Wareham NJ, Caulfield M, Munroe PB, Hattersley AT, McCarthy MI, Frayling TM (2008) Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet 40:575–583

    Article  PubMed  CAS  Google Scholar 

  7. Sanna S, Jackson AU, Nagaraja R, Willer CJ, Chen WM, Bonnycastle LL, Shen H, Timpson N, Lettre G, Usala G, Chines PS, Stringham HM, Scott LJ, Dei M, Lai S, Albai G, Crisponi L, Naitza S, Doheny KF, Pugh EW, Ben-Shlomo Y, Ebrahim S, Lawlor DA, Bergman RN, Watanabe RM, Uda M, Tuomilehto J, Coresh J, Hirschhorn JN, Shuldiner AR, Schlessinger D, Collins FS, Davey Smith G, Boerwinkle E, Cao A, Boehnke M, Abecasis GR, Mohlke KL (2008) Common variants in the GDF5-UQCC region are associated with variation in human height. Nat Genet 40:198–203

    Article  PubMed  CAS  Google Scholar 

  8. Soranzo N, Rivadeneira F, Chinappen-Horsley U, Malkina I, Richards JB et al (2009) Meta-analysis of genome-wide scans for human adult stature identifies novel loci and associations with measures of skeletal frame size. PLoS Genet 5(4):e1000445

    Article  PubMed  Google Scholar 

  9. Ferrari SL, Karasik D, Liu J, Karamohamed S, Herbert AG, Cupples LA, Kiel DP (2004) Interactions of interleukin-6 promoter polymorphisms with dietary and lifestyle factors and their association with bone mass in men and women from the Framingham Osteoporosis Study. J Bone Miner Res 19:552–559

    Article  PubMed  CAS  Google Scholar 

  10. Grant SF, Reid DM, Blake G, Herd R, Fogelman I, Ralston SH (1996) Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. Nat Genet 14:203–205

    Article  PubMed  CAS  Google Scholar 

  11. Ralston SH (2002) Genetic control of susceptibility to osteoporosis. J Clin Endocrinol Metab 87:2460–2466

    Article  PubMed  CAS  Google Scholar 

  12. Kiel DP, Demissie S, Dupuis J, Lunetta KL, Murabito JM, Karasik D (2007) Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med Genet 8 Suppl 1:S14

  13. Riggs BL, Nguyen TV, Melton LJ 3rd, Morrison NA, O’Fallon WM, Kelly PJ, Egan KS, Sambrook PN, Muhs JM, Eisman JA (1995) The contribution of vitamin D receptor gene alleles to the determination of bone mineral density in normal and osteoporotic women. J Bone Miner Res 10:991–996

    Article  PubMed  CAS  Google Scholar 

  14. Meunier P, Aaron J, Edouard C, Vignon G (1971) Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res 80:147–154

    Article  PubMed  CAS  Google Scholar 

  15. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  PubMed  CAS  Google Scholar 

  16. Lian JB, Stein GS, Javed A, van Wijnen AJ, Stein JL, Montecino M, Hassan MQ, Gaur T, Lengner CJ, Young DW (2006) Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 7:1–16

    Article  PubMed  CAS  Google Scholar 

  17. Burkhardt R, Kettner G, Bohm W, Schmidmeier M, Schlag R, Frisch B, Mallmann B, Eisenmenger W, Gilg T (1987) Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: a comparative histomorphometric study. Bone 8:157–164

    Article  PubMed  CAS  Google Scholar 

  18. Bergman RJ, Gazit D, Kahn AJ, Gruber H, McDougall S, Hahn TJ (1996) Age-related changes in osteogenic stem cells in mice. J Bone Miner Res 11:568–577

    Article  PubMed  CAS  Google Scholar 

  19. Gimble JM (1990) The function of adipocytes in the bone marrow stroma. New Biol 2(4):304–312

    PubMed  CAS  Google Scholar 

  20. Spiegelman BM (1998) PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47:507–514

    Article  PubMed  CAS  Google Scholar 

  21. Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME (2006) Playing with bone and fat. J Cell Biochem 98:251–266

    Article  PubMed  CAS  Google Scholar 

  22. Ackert-Bicknell CL, Demissie S, Marín de Evsikova C, Hsu YH, DeMambro VE, Karasik D, Cupples LA, Ordovas JM, Tucker KL, Cho K, Canalis E, Paigen B, Churchill GA, Forejt J, Beamer WG, Ferrari S, Bouxsein ML, Kiel DP, Rosen CJ (2008) PPARG by dietary fat interaction influences bone mass in mice and humans. J Bone Miner Res 23:1398–1408

    Article  PubMed  Google Scholar 

  23. Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW (2007) Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 92:1640–1646

    Article  PubMed  CAS  Google Scholar 

  24. Richards JB, Valdes AM, Burling K, Perks UC, Spector TD (2007) Serum adiponectin and bone mineral density in women. J Clin Endocrinol Metab 92:1517–1523

    Article  PubMed  CAS  Google Scholar 

  25. Dimitri P, Wales JK, Bishop N (2010) Fat and bone in children: differential effects of obesity on bone size and mass according to fracture history. J Bone Miner Res 25:527–536

    Article  PubMed  Google Scholar 

  26. Londos C, Sztalryd C, Tansey JT, Kimmel AR (2005) Role of PAT proteins in lipid metabolism. Biochimie 87:45–49

    Article  PubMed  CAS  Google Scholar 

  27. Greenberg AS, Egan JJ, Wek SA, Garty NB, Blanchette-Mackie EJ, Londos C (1991) Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. J Biol Chem 266:11341–11346

    PubMed  CAS  Google Scholar 

  28. Brasaemle DL (2007) Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48(12):2547–2559

    Article  PubMed  CAS  Google Scholar 

  29. Brasaemle DL, Rubin B, Harten IA, Gruia-Gray J, Kimmel AR, Londos C (2000) Perilipin A increases triacylglycerol storage by decreasing the rate of triacylglycerol hydrolysis. J Biol Chem 275:38486–38493

    Article  PubMed  CAS  Google Scholar 

  30. Tansey JT, Huml AM, Vogt R, Davis KE, Jones JM, Fraser KA, Brasaemle DL, Kimmel AR, Londos C (2003) Functional studies on native and mutated forms of perilipins. A role in protein kinase A–mediated lipolysis of triacylglycerols. J Biol Chem 278:8401–8406

    Article  PubMed  CAS  Google Scholar 

  31. Kern PA, Di Gregorio G, Lu T, Rassouli N, Ranganathan G (2004) Perilipin expression in human adipose tissue is elevated with obesity. J Clin Endocrinol Metab 89:1352–1358

    Article  PubMed  CAS  Google Scholar 

  32. Qi L, Shen H, Larson I, Schaefer EJ, Greenberg AS, Tregouet DA, Corella D, Ordovas JM (2004) Gender-specific association of a perilipin gene haplotype with obesity risk in a white population. Obes Res 12:1758–1765

    Article  PubMed  CAS  Google Scholar 

  33. Corella D, Qi L, Sorli JV, Godoy D, Portoles O, Coltell O, Greenberg AS, Ordovas JM (2005) Obese subjects carrying the 11482G>A polymorphism at the perilipin locus are resistant to weight loss after dietary energy restriction. J Clin Endocrinol Metab 90:5121–5126

    Article  PubMed  CAS  Google Scholar 

  34. Yamada Y, Ando F, Shimokata H (2006) Association of polymorphisms in forkhead box C2 and perilipin genes with bone mineral density in community-dwelling Japanese individuals. Int J Mol Med 18:119–127

    PubMed  CAS  Google Scholar 

  35. Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP (1979) An investigation of coronary heart disease in families. The Framingham offspring study. Am J Epidemiol 110:281–290

    PubMed  CAS  Google Scholar 

  36. Cupples LA, Arruda HT, Benjamin EJ, D’Agostino RB Sr, Demissie S, DeStefano AL, Dupuis J, Falls KM, Fox CS, Gottlieb DJ, Govindaraju DR, Guo CY, Heard-Costa NL, Hwang SJ, Kathiresan S, Kiel DP, Laramie JM, Larson MG, Levy D, Liu CY, Lunetta KL, Mailman MD, Manning AK, Meigs JB, Murabito JM, Newton-Cheh C, O’Connor GT, O’Donnell CJ, Pandey M, Seshadri S, Vasan RS, Wang ZY, Wilk JB, Wolf PA, Yang Q, Atwood LD (2007) The Framingham Heart Study 100 K SNP genome-wide association study resource: overview of 17 phenotype working group reports. BMC Med Genet 8 Suppl 1:S1

  37. Hannan MT, Felson DT, Dawson-Hughes B, Tucker KL, Cupples LA, Wilson PW, Kiel DP (2000) Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res 15:710–720

    Article  PubMed  CAS  Google Scholar 

  38. McLean RR, Hannan MT, Epstein BE, Bouxsein ML, Cupples LA, Murabito J, Kiel DP (2000) Elderly cohort study subjects unable to return for follow-up have lower bone mass than those who can return. Am J Epidemiol 151:689–692

    PubMed  CAS  Google Scholar 

  39. Hannan MT, Tucker KL, Dawson-Hughes B, Cupples LA, Felson DT, Kiel DP (2000) Effect of dietary protein on bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res 15:2504–2512

    Article  PubMed  CAS  Google Scholar 

  40. Yates LB, Karasik D, Beck TJ, Cupples LA, Kiel DP (2007) Hip structural geometry in old and old–old age: similarities and differences between men and women. Bone 41:722–732

    Article  PubMed  Google Scholar 

  41. Karasik D, Shimabuku NA, Zhou Y, Zhang Y, Cupples LA, Kiel DP, Demissie S (2008) A genome wide linkage scan of metacarpal size and geometry in the Framingham Study. Am J Hum Biol 20:663–670

    Article  PubMed  Google Scholar 

  42. Qi L, Corella D, Sorli JV, Portoles O, Shen H, Coltell O, Godoy D, Greenberg AS, Ordovas JM (2004) Genetic variation at the perlipin (PLIN) locus is associated with obesity-related phenotypes in white women. Clin Genet 66:299–310

    Article  PubMed  CAS  Google Scholar 

  43. Grey A (2008) Skeletal consequences of thiazolidinedione therapy. Osteoporos Int 19:129–137

    Article  PubMed  CAS  Google Scholar 

  44. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is from the Framingham Heart Study of the National Heart, Lung, and Blood Institute of the National Institutes of Health and Boston University School of Medicine. The Framingham Heart Study core examinations were supported by the National Heart, Lung, and Blood Institute’s (contract N01-HC-25195). Measurements of phenotypes were funded by the National Institute of Arthritis, Musculoskeletal and Skin Diseases and the National Institute on Aging (grants R01 AR/AG 41398 and R01 AR050066). Genetic analyses were supported by NIH grants HL54776 and DK075030 and by the US Department of Agriculture Research Service (contracts 53-K06–5-10 and 58–1950-9–001). We gratefully acknowledge the Framingham Study members who participated in this study as well as the study coordinators, who contributed to the success of this work.

Disclosures

Dr. Douglas P. Kiel discloses a consultant/advisory role for Wyeth, Merck, Amgen, Novartis, Procter and Gamble, and Lilly and funding from Pfizer, Merck, Amgen, Novartis, and Hologic unrelated to the subject matter of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie E. Cusano.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cusano, N.E., Kiel, D.P., Demissie, S. et al. A Polymorphism in a Gene Encoding Perilipin 4 Is Associated with Height but not with Bone Measures in Individuals from the Framingham Osteoporosis Study. Calcif Tissue Int 90, 96–107 (2012). https://doi.org/10.1007/s00223-011-9552-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-011-9552-7

Keywords

Navigation