Skip to main content

Advertisement

Log in

The Effect of Oral Glucose Tolerance Test on Serum Osteocalcin and Bone Turnover Markers in Young Adults

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteocalcin (OC) is an osteoblast-derived protein implicated in the regulation of glucose tolerance and energy metabolism. This endocrine function has been suggested to be exerted via its undercarboxylated form, which has been shown to induce expression of adiponectin, insulin, and islet cell proliferation in mice. Furthermore, insulin has recently been shown to regulate the biological activity of OC in bone. Our aim was to explore the association between glucose and bone metabolism by evaluating the effect of a standard 75 g oral glucose tolerance test (OGTT) on serum OC, carboxylated OC (cOC) and bone-turnover markers (BTMs) C terminal telopeptide (βCTX-I) and N terminal propeptide (PINP) of type I collagen and tartrate-resistant acid phosphatase 5b (TRACP5b). Serum samples collected at 0 and at 120 min were analyzed in a cohort of normoglycemic young adults (n = 23, mean age 23.6 years). During OGTT a significant decrease was observed in all BTMs (P < 0.001 for all variables). The median decreases from 0 to 120 min for OC, cOC, βCTX-I, PINP, and TRACP5b were −32.1% (−37.9 to −19.6), −34.4% (−39.8 to −22.2), −61.4% (−68.5 to −53.0), −26.8% (−33.2 to −19.2), and −44.5% (−48.3 to −40.2), respectively. A strong association between the changes in OC and cOC was observed (r = 0.83, P < 0.001). The decrease in PINP was associated with changes in OC, whereas the changes in βCTX-I and TRACP5b were not associated with decreases in OC or cOC. The observed OGTT-induced changes in bone-derived proteins were partially independent of each other and potentially mediated by different mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Delmas PD (1993) Biochemical markers of bone turnover for the clinical investigation of osteoporosis. Osteoporos Int 3(suppl 1):81–86

    Article  PubMed  Google Scholar 

  2. Delmas PD, Beaudreuil J (1997) Biochemical markers of bone turnover in osteoporosis. J Clin Rheumatol 4:211–216

    Article  Google Scholar 

  3. Luukinen H, Käkönen SM, Pettersson K, Koski K, Laippala P, Lövgren T, Kivelä SL, Väänänen HK (2000) Strong prediction of fractures among older adults by the ratio of carboxylated to total serum osteocalcin. J Bone Miner Res 12:2473–2478

    Article  Google Scholar 

  4. Lenora J, Ivaska KK, Obrant KJ, Gerdhem P (2007) Prediction of bone loss using biochemical markers of bone turnover. Osteoporos Int 18(9):1297–1305

    Article  PubMed  CAS  Google Scholar 

  5. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–459

    Article  PubMed  CAS  Google Scholar 

  6. Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic disease in wild-type mice. Proc Natl Acad Sci USA 105:5266–5270

    Article  PubMed  CAS  Google Scholar 

  7. Gundberg C, Nieman S, Abrams S, Rosen H (1998) Vitamin K status and bone health: an analysis of methods for determination of undercarboxylated osteocalcin. J Clin Endocrinol Metab 83:3258–3266

    Article  PubMed  CAS  Google Scholar 

  8. Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodelling and energy metabolism. Cell 142:296–308

    Article  PubMed  CAS  Google Scholar 

  9. Pittas AG, Harris SS, Eliades M, Stark P, Dawson-Hughes B (2009) Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab 94:827–832

    Article  PubMed  CAS  Google Scholar 

  10. Kindblom JM, Ohlsson C, Ljunggren O, Karlsson MK, Tivesten A, Smith U, Mellström D (2009) Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res 24(5):785–791

    Article  PubMed  CAS  Google Scholar 

  11. Shea MK, Gundberg CM, Meigs JB, Dallal GE, Saltzman E, Yoshida M, Jacques PF, Booth SL (2009) Gamma-carboxylation of osteocalcin and insulin resistance in older men and women. Am J Clin Nutr 5:1230–1235

    Article  Google Scholar 

  12. Fernandez-Real JM, Izquierdo M, Ortega F, Gorostiaga E, Gómez-Ambrosi J, Moreno-Navarrete JM, Frühbeck G, Martínez C, Idoate F, Salvador J, Forga L, Ricart W, Ibañez J (2009) The relationship of serum osteocalcin concentration to insulin secretion, sensitivity, and disposal with hypocaloric diet and resistance training. J Clin Endocrinol Metab 94:237–245

    Article  PubMed  CAS  Google Scholar 

  13. Hwang YC, Jeong IK, Ahn KJ, Chung HY (2009) The uncarboxylated form of osteocalcin is associated with improved glucose tolerance and enhanced β-cell function in middle-aged male subjects. Diabetes Metab Res Rev 25:768–772

    Article  PubMed  CAS  Google Scholar 

  14. Iglesias P, Arrieta F, Piñera M, Botella-Carretero JI, Balsa JA, Zamarrón I, Menacho M, Díez JJ, Muñoz T, Vázquez C (2011) Serum concentrations of osteocalcin, procollagen type 1 N-terminal propeptide and beta-crosslaps in obese subjects with varying degrees of glucose tolerance. Clin Endocrinol 75(2):184–188

    Article  CAS  Google Scholar 

  15. Clemens TL, Karsenty G (2011) The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res 4:677–680

    Article  Google Scholar 

  16. Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R (2002) Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone 30(6):886–890

    Article  PubMed  CAS  Google Scholar 

  17. Holst JJ, Hartmann B, Gottschalck IB, Jeppesen PB, Miholic J, Henriksen DB (2007) Bone resorption is decreased postprandially by intestinal factors and glucagon-like peptide-2 is a possible candidate. Scand J Gastroenterol 42:814–820

    Article  PubMed  CAS  Google Scholar 

  18. Nuche-Berenguer B, Moreno P, Portal-Nuñez S, Dapía S, Esbrit P, Villanueva-Peñacarrillo ML (2009) Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif Tissue Int 84:453–461

    Article  PubMed  CAS  Google Scholar 

  19. Henriksen DB, Alexandersen P, Bjarnason NH, Vilsbøll T, Hartmann B, Henriksen EE, Byrjalsen I, Krarup T, Holst JJ, Christiansen C (2003) Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res 18:2180–2189

    Article  PubMed  CAS  Google Scholar 

  20. Hovi P, Andersson S, Eriksson JG, Järvenpää AL, Strang-Karlsson S, Mäkitie O, Kajantie E (2007) Glucose regulation in young adults with very low birth weight. N Engl J Med 356:2053–2063

    Article  PubMed  CAS  Google Scholar 

  21. Käkönen SM, Hellman J, Karp M, Laaksonen P, Obrant KJ, Väänänen HK, Lövgren T, Pettersson K (2000) Development and evaluation of three immunofluorometric assays that measure different forms of osteocalcin in serum. Clin Chem 46:332–337

    PubMed  Google Scholar 

  22. Hellman J, Käkönen SM, Matikainen MT, Karp M, Löfgren T, Väänänen HK, Pettersson K (1996) Epitope mapping of nine monoclonal antibodies against osteocalcin: combinations into two-site assays affect both assay specificity and sample stability. J Bone Miner Res 11:1165–1175

    Article  PubMed  CAS  Google Scholar 

  23. Bjarnason NH, Henriksen EE, Alexandersen P, Christgau S, Henriksen DB, Christiansen C (2002) Mechanism of circadian variation in bone resorption. Bone 30(1):307–313

    Article  PubMed  CAS  Google Scholar 

  24. Clowes JA, Allen HC, Prentis DM, Eastell R, Blumsohn A (2003) Octreotide abolishes the acute decrease in bone turnover in response to oral glucose. J Clin Endocrinol Metab 10:4867–4873

    Article  Google Scholar 

  25. Clowes JA, Robinson RT, Heller SR, Eastell R, Blumsohn A (2002) Acute changes of bone turnover and PTH induced by insulin and glucose: euglycemic and hypoglycemic hyperinsulinemic clamp studies. J Endocrinol Metab 7:3324–3329

    Article  Google Scholar 

  26. Qvist P, Christgau S, Pedersen BJ, Schlemmer A, Christiansen C (2002) Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol and fasting. Bone 1:57–61

    Article  Google Scholar 

  27. Hannon RA, Clowes JA, Eagleton AC, Al-Hadari A, Eastell R, Blumsohn A (2004) Clinical performance of immunoreactive tartrate-resistant acid phosphatase isoform 5b as a marker of bone resorption. Bone 34:187–194

    Article  PubMed  CAS  Google Scholar 

  28. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, Faugere MC, Aja S, Hussain MA, Brüning JC, Clemens TL (2010) Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell 142(2):198–200

    Article  Google Scholar 

  29. Basu R, Peterson J, Rizza R, Khosla S (2011) Effects of physiological variations in circulating insulin levels on bone turnover in humans. J Clin Endocrinol Metab 96(5):1450–1455

    Article  PubMed  CAS  Google Scholar 

  30. Meier JJ, Nauck MA, Schmidt WE, Gallwitz B (2002) Gastric inhibitory polypeptide: the neglected incretin revisited. Regul Pept 107:1–13

    Article  PubMed  CAS  Google Scholar 

  31. Nauck MA, Homberger E, Siegel EG, Allen RC, Eaton RP, Ebert R, Creutzfeldt W (1986) Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 63(2):492–498

    Article  PubMed  CAS  Google Scholar 

  32. Henriksen DB, Alexandersen P, Hartmann B, Adrian CL, Byrjalsen I, Bone HG, Holst JJ, Christiansen C (2007) Disassociation of bone resorption and formation by GLP-2. A 14-day study in healthy postmenopausal women. Bone 40:723–729

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Academy of Finland, the Foundation for Pediatric Research, the Sigrid Jusélius Foundation, the Foundation for Clinical Chemistry Research, and the Helsinki University Hospital Research Funds, all Helsinki, Finland. The funding sources had no involvement in study design; data collection, analysis, or interpretation; or the writing of or the decision to submit the report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Paldánius.

Additional information

P. Paldánius has stock ownership in Novartis Pharma. All other authors have stated that-they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paldánius, P.M., Ivaska, K.K., Hovi, P. et al. The Effect of Oral Glucose Tolerance Test on Serum Osteocalcin and Bone Turnover Markers in Young Adults. Calcif Tissue Int 90, 90–95 (2012). https://doi.org/10.1007/s00223-011-9551-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-011-9551-8

Keywords

Navigation