Skip to main content

Advertisement

Log in

Overexpression of Runx2 and MKP-1 Stimulates Transdifferentiation of 3T3-L1 Preadipocytes into Bone-Forming Osteoblasts In Vitro

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Runx2, a transcription factor, is essential for osteoblastic differentiation, bone formation, and maintenance. We examined the effect of Runx2 on transdifferentiation of 3T3-L1 preadipocytes into functional, mature osteoblasts. Forced expression of exogenous Runx2 using a retroviral gene-delivery system showed increases of alkaline phosphatase (ALP) activity and expression of the osteoblastic marker genes osteocalcin (OC), bone sialoprotein (BSP), and osterix (Osx), accompanied by low-level matrix mineralization. In contrast, adipocytic differentiation was completely blocked with downregulation of adipogenic transcription factors PPARγ2, C/EBPα, and C/EBPδ. Treatment of dexamethasone (Dex), a synthetic glucocorticoid, stimulated the formation of mineralized nodules in Runx2-overexpressing 3T3-L1 cells with increases of ALP, OC, BSP, and Osx expression. Here, we focused on a dual specific phosphatase, mitogen-activated protein kinase (MKP-1), since Dex significantly increased MKP-1 expression in Runx2-overexpressing 3T3-L1 cells. Forced expression of exogenous MKP-1 resulted in accumulation of robust matrix mineralization in parallel with induction of ALP activity and expression of OC, BSP, and Osx in Runx2-overexpressing 3T3-L1 cells. These results suggest that simultaneous overexpression of Runx2 and MKP-1 is effective for transdifferentiation of preadipocytes into fully differentiated bone-forming osteoblasts and provide a novel strategy for cell-based therapeutic applications requiring significant numbers of osteogenic cells to synthesize mineralized constructs for the treatment of large bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ogawa E, Maruyama M, Kagoshima H et al (1993) PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci USA 90:6859–6863

    Article  PubMed  CAS  Google Scholar 

  2. Komori T, Yagi H, Nomura S et al (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89:755–764

    Article  PubMed  CAS  Google Scholar 

  3. Ducy P, Karsenty G (1995) Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol 15:1858–1869

    PubMed  CAS  Google Scholar 

  4. Sato M, Morii E, Komori T et al (1998) Transcriptional regulation of osteopontin gene in vivo by PEBP2αA/CBFA1 and ETS1 in the skeletal tissues. Oncogene 17:1517–1525

    Article  PubMed  CAS  Google Scholar 

  5. Benson MD, Aubin JE, Xiao G et al (1999) Cloning of a 2.5 kb murine bone sialoprotein promoter fragment and functional analysis of putative Osf2 binding sites. J Bone Miner Res 14:396–405

    Article  PubMed  CAS  Google Scholar 

  6. Ducy P, Zhang R, Geoffroy V et al (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  PubMed  CAS  Google Scholar 

  7. Byers BA, Pavlath GK, Murphy TJ et al (2002) Cell-type-dependent up-regulation of in vitro mineralization after overexpression of the osteoblast-specific transcription factor Runx2/Cbfal. J Bone Miner Res 17:1931–1944

    Article  PubMed  CAS  Google Scholar 

  8. Byers BA, García AJ (2004) Exogenous Runx2 expression enhances in vitro osteoblastic differentiation and mineralization in primary bone marrow stromal cells. Tissue Eng 10:1623–1632

    Article  PubMed  CAS  Google Scholar 

  9. Phillips JE, Gersbach CA, Wojtowicz AM et al (2006) Glucocorticoid-induced osteogenesis is negatively regulated by Runx2/Cbfa1 serine phosphorylation. J Cell Sci 119:581–591

    Article  PubMed  CAS  Google Scholar 

  10. Otto F, Thornell AP, Crompton T et al (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89:765–771

    Article  PubMed  CAS  Google Scholar 

  11. Liu W, Toyosawa S, Furuichi T et al (2001) Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J Cell Biol 155:157–166

    Article  PubMed  CAS  Google Scholar 

  12. Geoffroy V, Kneissel M, Fournier B et al (2002) High bone resorption in adult aging transgenic mice overexpressing Cbfa1/Runx2 in cells of the osteoblastic lineage. Mol Cell Biol 22:6222–6233

    Article  PubMed  CAS  Google Scholar 

  13. Rosen ED, Walkey CJ, Puigserver P et al (2000) Transcriptional regulation of adipogenesis. Genes Dev 14:1293–1307

    PubMed  CAS  Google Scholar 

  14. Zhu Y, Qi C, Korenberg JR et al (1995) Structural organization of mouse peroxisome proliferator-activated receptor γ (mPPAR γ) gene: alternative promoter use and different splicing yield two mPPAR γ isoforms. Proc Natl Acad Sci USA 92:7921–7925

    Article  PubMed  CAS  Google Scholar 

  15. Landschulz WH, Johnson PF, McKnight SL (1989) The DNA binding domain of the rat liver nuclear protein C/EBP is bipartite. Science 243:1681–1688

    Article  PubMed  CAS  Google Scholar 

  16. Yeh WC, Cao Z, Classon M et al (1995) Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev 9:168–181

    Article  PubMed  CAS  Google Scholar 

  17. Cao Z, Umek RM, McKnight SL (1991) Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-L1 cells. Genes Dev 5:1538–1552

    Article  PubMed  CAS  Google Scholar 

  18. Christy RJ, Kaestner KH, Geiman DE et al (1991) CCAAT/enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. Proc Natl Acad Sci USA 88:2593–2597

    Article  PubMed  CAS  Google Scholar 

  19. Clarke SL, Robinson CE, Gimble JM (1997) CAAT/enhancer binding proteins directly modulate transcription from the peroxisome proliferator-activated receptor γ2 promoter. Biochem Biophys Res Commun 240:99–103

    Article  PubMed  CAS  Google Scholar 

  20. Lin FT, Lane MD (1994) CCAAT/enhancer binding protein α is sufficient to initiate the 3T3-L1 adipocyte differentiation program. Proc Natl Acad Sci USA 91:8757–8761

    Article  PubMed  CAS  Google Scholar 

  21. Tontonoz P, Hu E, Spiegelman BM (1994) Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79:1147–1156

    Article  PubMed  CAS  Google Scholar 

  22. Fajas L, Fruchart JC, Auwerx J (1998) Transcriptional control of adipogenesis. Curr Opin Cell Biol 10:165–173

    Article  PubMed  CAS  Google Scholar 

  23. Park SR, Oreffo RO, Triffitt JT (1999) Interconversion potential of cloned human marrow adipocytes in vitro. Bone 24:549–555

    Article  PubMed  CAS  Google Scholar 

  24. Justesen J, Pedersen SB, Stenderup K et al (2004) Subcutaneous adipocytes can differentiate into bone-forming cells in vitro and in vivo. Tissue Eng 10:381–391

    Article  PubMed  CAS  Google Scholar 

  25. Zhang X, Yang M, Lin L et al (2006) Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose-derived stem cells in vitro and in vivo. Calcif Tissue Int 79:169–178

    Article  PubMed  CAS  Google Scholar 

  26. Oki Y, Watanabe S, Endo T et al (2008) Mature adipocyte-derived dedifferentiated fat cells can trans-differentiate into osteoblasts in vitro and in vivo only by all-trans retinoic acid. Cell Struct Funct 33:211–222

    Article  PubMed  CAS  Google Scholar 

  27. Green H, Meuth M (1974) An established pre-adipose cell line and its differentiation in culture. Cell 3:127–133

    Article  PubMed  CAS  Google Scholar 

  28. Green H, Kehinde O (1979) Formation of normally differentiated subcutaneous fat pads by an established preadipose cell line. J Cell Physiol 101:169–171

    Article  PubMed  CAS  Google Scholar 

  29. Mikami Y, Takahashi T, Kato S et al (2008) Dexamethasone promotes DMP1 mRNA expression by inhibiting negative regulation of Runx2 in multipotential mesenchymal progenitor, ROB-C26. Cell Biol Int 32:239–246

    Article  PubMed  CAS  Google Scholar 

  30. Harada H, Tagashira S, Fujiwara M et al (1999) Cbfa1 isoforms exert functional differences in osteoblast differentiation. J Biol Chem 274:6972–6978

    Article  PubMed  CAS  Google Scholar 

  31. Tanabe N, Ito-Kato E, Suzuki N et al (2004) IL-1α affects mineralized nodule formation by rat osteoblasts. Life Sci 75:2317–2327

    Article  PubMed  CAS  Google Scholar 

  32. Sudhakar S, Katz MS, Elango N (2001) Analysis of type-I and type-II RUNX2 protein expression in osteoblasts. Biochem Biophys Res Commun 286:74–79

    Article  PubMed  CAS  Google Scholar 

  33. Lazarenko OP, Rzonca SO, Suva LJ et al (2006) Netoglitazone is a PPAR-gamma ligand with selective effects on bone and fat. Bone 38:74–84

    Article  PubMed  CAS  Google Scholar 

  34. Schilling T, Nöth U, Klein-Hitpass L et al (2007) Plasticity in adipogenesis and osteogenesis of human mesenchymal stem cells. Mol Cell Endocrinol 271:1–17

    Article  PubMed  CAS  Google Scholar 

  35. Kim SW, Her SJ, Kim SY et al (2005) Ectopic overexpression of adipogenic transcription factors induces transdifferentiation of MC3T3-E1 osteoblasts. Biochem Biophys Res Commun 327:811–819

    Article  PubMed  CAS  Google Scholar 

  36. Darlington GJ, Ross SE, MacDougald OA (1998) The role of C/EBP genes in adipocyte differentiation. J Biol Chem 273:30057–30060

    Article  PubMed  CAS  Google Scholar 

  37. Hong JH, Hwang ES, McManus MT et al (2005) TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309:1074–1078

    Article  PubMed  CAS  Google Scholar 

  38. Yoshida CA, Furuichi T, Fujita T et al (2002) Core-binding factor β interacts with Runx2 and is required for skeletal development. Nat Genet 32:633–638

    Article  PubMed  CAS  Google Scholar 

  39. Miller J, Horner A, Stacy T et al (2002) The core-binding factor β subunit is required for bone formation and hematopoietic maturation. Nat Genet 32:645–649

    Article  PubMed  CAS  Google Scholar 

  40. Lee KS, Kim HJ, Li QL et al (2000) Runx2 is a common target of transforming growth factor β1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol 20:8783–8792

    Article  PubMed  CAS  Google Scholar 

  41. Zhang YW, Yasui N, Ito K et al (2000) A RUNX2/PEBP2αA/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc Natl Acad Sci USA 97:10549–10554

    Article  PubMed  CAS  Google Scholar 

  42. Kim S, Koga T, Isobe M et al (2003) Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev 17:1979–1991

    Article  PubMed  CAS  Google Scholar 

  43. Zhou G, Zheng Q, Engin F et al (2006) Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc Natl Acad Sci USA 103:19004–19009

    Article  PubMed  CAS  Google Scholar 

  44. Jheon AH, Ganss B, Cheifetz S et al (2001) Characterization of a novel KRAB/C2H2 zinc finger transcription factor involved in bone development. J Biol Chem 276:18282–18289

    Article  PubMed  CAS  Google Scholar 

  45. Hinoi E, Fujimori S, Wang L et al (2006) Nrf2 negatively regulates osteoblast differentiation via interfering with Runx2-dependent transcriptional activation. J Biol Chem 281:18015–18024

    Article  PubMed  CAS  Google Scholar 

  46. Dobreva G, Chahrour M, Dautzenberg M et al (2006) SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell 125:971–986

    Article  PubMed  CAS  Google Scholar 

  47. Liu D, Scafidi J, Prada AE et al (2002) Nuclear phosphatases and the proteasome in suppression of STAT1 activity in hepatocytes. Biochem Biophys Res Commun 299:574–580

    Article  PubMed  CAS  Google Scholar 

  48. Zheng H, Guo Z, Ma Q et al (2004) Cbfa1/osf2 transduced bone marrow stromal cells facilitate bone formation in vitro and in vivo. Calcif Tissue Int 74:194–203

    Article  PubMed  CAS  Google Scholar 

  49. Skillington J, Choy L, Derynck R (2002) Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes. J Cell Biol 159:135–146

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Gérard Karsenty (Department of Genetics and Development, Columbia University Medical Center) for Cbfa1-pCMV5 and 6 × OSE2/pGL3Basic, and Dr. Yoshikazu Mikami (Department of Anatomy, Nihon University School of Dentistry) for MKP-1/pcDNA3.1(+). This work was supported by grants from Dental Research Center, Nihon University School of Dentistry, Sato Fund, Nihon University School of Dentistry, and Graduate School of Dentistry, Nihon University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomihisa Takahashi.

Additional information

The author has stated that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, T. Overexpression of Runx2 and MKP-1 Stimulates Transdifferentiation of 3T3-L1 Preadipocytes into Bone-Forming Osteoblasts In Vitro. Calcif Tissue Int 88, 336–347 (2011). https://doi.org/10.1007/s00223-011-9461-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-011-9461-9

Keywords

Navigation