Skip to main content

Advertisement

Log in

Genotypes and Haplotypes of the Estrogen Receptor Genes, but Not the Retinoblastoma-interacting Zinc Finger Protein 1 Gene, Are Associated with Osteoporosis

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteoporosis is a common age-related disease with a strong genetic influence. Polymorphisms of ESR1 have consistently been shown to be associated with bone mineral density (BMD) and fracture; however, in regulating bone metabolism, ESR1 interacts with both ESR2 and RIZ1. We therefore examined the effects of polymorphisms in the ESR1, ESR2, and RIZ1 genes and their haplotypes on vertebral fractures and BMD in a case-control study comprising 462 osteoporotic patients and 336 controls. In ESR1, we found the variant C allele of the XbaI polymorphism to be associated with decreased risk of vertebral fractures in women (P < 0.01), whereas in men, the T allele seemed protective (P = 0.05). The variant G allele of the PvuII polymorphism decreased the risk of vertebral fractures independently of lumbar spine BMD in women (P = 0.04) but had no effect in men. Haplotype X-P-H (XbaI:C, PvuII:G, and a high number of TA repeats) was associated with decreased risk of vertebral fractures in women (P = 0.04) but not men. In ESR2, the G allele of the AluI polymorphism was associated with increased fracture risk (P = 0.04), and the haplotype that comprises rs1256031:T and AluI:A increased lumbar spine BMD by 0.04 ± 0.02 g/cm2 (P < 0.05) and decreased the risk of vertebral fractures (P = 0.04). There was no effect of the RIZ1 polymorphism on BMD or fracture risk and no evidence of interaction between the polymorphisms and haplotypes thereof. We confirm that genetic variants in ESR1 and ESR2, but not RIZ1, are important in osteoporosis. We found no evidence of interaction between polymorphisms, but we found that the effects of genetic variants in ESR1 might be sex dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eriksen EF, Hodgson SF, Eastell R, Cedel SL, O’Fallon WM, Riggs BL (1990) Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quantitative assessment of rates of formation, resorption, and bone loss at tissue and cellular levels. J Bone Miner Res 5:311–319

    Article  CAS  PubMed  Google Scholar 

  2. Kanis JA, Pitt FA (1992) Epidemiology of osteoporosis. Bone 13(suppl 1):S7–S15

    Article  PubMed  Google Scholar 

  3. Cummings SR, Browner WS, Bauer D, Stone K, Ensrud K, Jamal S, Ettinger B (1998) Endogenous hormones and the risk of hip and vertebral fractures among older women. Study of Osteoporotic Fractures Research Group. N Engl J Med 339:733–738

    Article  CAS  PubMed  Google Scholar 

  4. Ettinger B, Pressman A, Sklarin P, Bauer DC, Cauley JA, Cummings SR (1998) Associations between low levels of serum estradiol, bone density, and fractures among elderly women: the study of osteoporotic fractures. J Clin Endocrinol Metab 83:2239–2243

    Article  CAS  PubMed  Google Scholar 

  5. Stone K, Bauer DC, Black DM, Sklarin P, Ensrud KE, Cummings SR (1998) Hormonal predictors of bone loss in elderly women: a prospective study. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 13:1167–1174

    Article  CAS  PubMed  Google Scholar 

  6. Mellstrom D, Vandenput L, Mallmin H, Holmberg AH, Lorentzon M, Oden A, Johansson H, Orwoll ES, Labrie F, Karlsson MK, Ljunggren O, Ohlsson C (2008) Older men with low serum estradiol and high serum SHBG have an increased risk of fractures. J Bone Miner Res 23:1552–1560

    Article  PubMed  Google Scholar 

  7. Shevde NK, Pike JW (1996) Estrogen modulates the recruitment of myelopoietic cell progenitors in rat through a stromal cell-independent mechanism involving apoptosis. Blood 87:2683–2692

    CAS  PubMed  Google Scholar 

  8. Mano H, Yuasa T, Kameda T, Miyazawa K, Nakamaru Y, Shiokawa M, Mori Y, Yamada T, Miyata K, Shindo H, Azuma H, Hakeda Y, Kumegawa M (1996) Mammalian mature osteoclasts as estrogen target cells. Biochem Biophys Res Commun 223:637–642

    Article  CAS  PubMed  Google Scholar 

  9. Ponglikitmongkol M, Green S, Chambon P (1988) Genomic organization of the human oestrogen receptor gene. EMBO J 7:3385–3388

    CAS  PubMed  Google Scholar 

  10. Enmark E, Pelto-Huikko M, Grandien K, Lagercrantz S, Lagercrantz J, Fried G, Nordenskjold M, Gustafsson JA (1997) Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab 82:4258–4265

    Article  CAS  PubMed  Google Scholar 

  11. Carling T, Kim KC, Yang XH, Gu J, Zhang XK, Huang S (2004) A histone methyltransferase is required for maximal response to female sex hormones. Mol Cell Biol 24:7032–7042

    Article  CAS  PubMed  Google Scholar 

  12. Lindberg MK, Moverare S, Skrtic S, Gao H, hlman-Wright K, Gustafsson JA, Ohlsson C (2003) Estrogen receptor (ER)-beta reduces ERalpha-regulated gene transcription, supporting a “ying yang” relationship between ERalpha and ERbeta in mice. Mol Endocrinol 17:203–208

    Article  CAS  PubMed  Google Scholar 

  13. Liu MM, Albanese C, Anderson CM, Hilty K, Webb P, Uht RM, Price RH Jr, Pestell RG, Kushner PJ (2002) Opposing action of estrogen receptors alpha and beta on cyclin D1 gene expression. J Biol Chem 277:24353–24360

    Article  CAS  PubMed  Google Scholar 

  14. Slemenda CW, Christian JC, Williams CJ, Norton JA, Johnston CC Jr (1991) Genetic determinants of bone mass in adult women: a reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 6:561–567

    Article  CAS  PubMed  Google Scholar 

  15. Kannus P, Palvanen M, Kaprio J, Parkkari J, Koskenvuo M (1999) Genetic factors and osteoporotic fractures in elderly people: prospective 25 year follow up of a nationwide cohort of elderly Finnish twins. BMJ 319:1334–1337

    CAS  PubMed  Google Scholar 

  16. Richards JB, Rivadeneira F, Inouye M, Pastinen TM, Soranzo N, Wilson SG, Andrew T, Falchi M, Gwilliam R, Ahmadi KR, Valdes AM, Arp P, Whittaker P, Verlaan DJ, Jhamai M, Kumanduri V, Moorhouse M, van Meurs JB, Hofman A, Pols HA, Hart D, Zhai G, Kato BS, Mullin BH, Zhang F, Deloukas P, Uitterlinden AG, Spector TD (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371:1505–1512

    Article  CAS  PubMed  Google Scholar 

  17. Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J, Center JR, Nguyen TV, Bagger Y, Gulcher JR, Eisman JA, Christiansen C, Sigurdsson G, Kong A, Thorsteinsdottir U, Stefansson K (2008) Multiple genetic loci for bone mineral density and fractures. N Engl J Med 358:2355–2365

    Article  CAS  PubMed  Google Scholar 

  18. Langdahl BL, Ralston SH, Grant SF, Eriksen EF (1998) An Sp1 binding site polymorphism in the COLIA1 gene predicts osteoporotic fractures in both men and women. J Bone Miner Res 13:1384–1389

    Article  CAS  PubMed  Google Scholar 

  19. Uitterlinden AG, Pols HA, Burger H, Huang Q, van Daele PL, Van Duijn CM, Hofman A, Birkenhager JC, van Leeuwen JP (1996) A large-scale population-based study of the association of vitamin D receptor gene polymorphisms with bone mineral density. J Bone Miner Res 11:1241–1248

    Article  CAS  PubMed  Google Scholar 

  20. Langdahl BL, Knudsen JY, Jensen HK, Gregersen N, Eriksen EF (1997) A sequence variation: 713–8delC in the transforming growth factor-beta 1 gene has higher prevalence in osteoporotic women than in normal women and is associated with very low bone mass in osteoporotic women and increased bone turnover in both osteoporotic and normal women. Bone 20:289–294

    Article  CAS  PubMed  Google Scholar 

  21. Ferrari SL, Deutsch S, Choudhury U, Chevalley T, Bonjour JP, Dermitzakis ET, Rizzoli R, Antonarakis SE (2004) Polymorphisms in the low-density lipoprotein receptor-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am J Hum Genet 74:866–875

    Article  CAS  PubMed  Google Scholar 

  22. Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Richards JB, Zillikens MC, Kavvoura FK, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Grundberg E, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra B, Pastinen T, Pols HA, Sigurdsson G, Soranzo N, Thorleifsson G, Thorsteinsdottir U, Williams FM, Wilson SG, Zhou Y, Ralston SH, Van Duijn CM, Spector T, Kiel DP, Stefansson K, Ioannidis JP, Uitterlinden AG (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41:1199–1206

    Article  CAS  PubMed  Google Scholar 

  23. Langdahl BL, Lokke E, Carstens M, Stenkjaer LL, Eriksen EF (2000) A TA repeat polymorphism in the estrogen receptor gene is associated with osteoporotic fractures but polymorphisms in the first exon and intron are not. J Bone Miner Res 15:2222–2230

    Article  CAS  PubMed  Google Scholar 

  24. Albagha OM, McGuigan FE, Reid DM, Ralston SH (2001) Estrogen receptor alpha gene polymorphisms and bone mineral density: haplotype analysis in women from the United Kingdom. J Bone Miner Res 16:128–134

    Article  CAS  PubMed  Google Scholar 

  25. Ioannidis JP, Stavrou I, Trikalinos TA, Zois C, Brandi ML, Gennari L, Albagha O, Ralston SH, Tsatsoulis A (2002) Association of polymorphisms of the estrogen receptor alpha gene with bone mineral density and fracture risk in women: a meta-analysis. J Bone Miner Res 17:2048–2060

    Article  CAS  PubMed  Google Scholar 

  26. van Meurs JB, Schuit SC, Weel AE, van der KM, Bergink AP, Arp PP, Colin EM, Fang Y, Hofman A, Van Duijn CM, van Leeuwen JP, Pols HA, Uitterlinden AG (2003) Association of 5′ estrogen receptor alpha gene polymorphisms with bone mineral density, vertebral bone area and fracture risk. Hum Mol Genet 12:1745–1754

  27. Ioannidis JP, Ralston SH, Bennett ST, Brandi ML, Grinberg D, Karassa FB, Langdahl B, van Meurs JB, Mosekilde L, Scollen S, Albagha OM, Bustamante M, Carey AH, Dunning AM, Enjuanes A, van Leeuwen JP, Mavilia C, Masi L, McGuigan FE, Nogues X, Pols HA, Reid DM, Schuit SC, Sherlock RE, Uitterlinden AG (2004) Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA 292:2105–2114

    Article  CAS  PubMed  Google Scholar 

  28. Shearman AM, Karasik D, Gruenthal KM, Demissie S, Cupples LA, Housman DE, Kiel DP (2004) Estrogen receptor beta polymorphisms are associated with bone mass in women and men: the Framingham Study. J Bone Miner Res 19:773–781

    Article  CAS  PubMed  Google Scholar 

  29. Rivadeneira F, van Meurs JB, Kant J, Zillikens MC, Stolk L, Beck TJ, Arp P, Schuit SC, Hofman A, Houwing-Duistermaat JJ, Van Duijn CM, van Leeuwen JP, Pols HA, Uitterlinden AG (2006) Estrogen receptor beta (ESR2) polymorphisms in interaction with estrogen receptor alpha (ESR1) and insulin-like growth factor I (IGF1) variants influence the risk of fracture in postmenopausal women. J Bone Miner Res 21:1443–1456

    Article  CAS  PubMed  Google Scholar 

  30. Arko B, Prezelj J, Komel R, Kocijancic A, Marc J (2002) No major effect of estrogen receptor beta gene RsaI polymorphism on bone mineral density and response to alendronate therapy in postmenopausal osteoporosis. J Steroid Biochem Mol Biol 81:147–152

    Article  CAS  PubMed  Google Scholar 

  31. Ichikawa S, Koller DL, Peacock M, Johnson ML, Lai D, Hui SL, Johnston CC, Foroud TM, Econs MJ (2005) Polymorphisms in the estrogen receptor beta (ESR2) gene are associated with bone mineral density in Caucasian men and women. J Clin Endocrinol Metab 90:5921–5927

    Article  CAS  PubMed  Google Scholar 

  32. Efstathiadou Z, Koukoulis G, Stakias N, Challa A, Zintzaras E, Tsatsoulis A (2006) Correlation of estrogen receptor beta gene polymorphisms with spinal bone mineral density in peri- and post-menopausal Greek women. Maturitas 53:380–385

    Article  CAS  PubMed  Google Scholar 

  33. Grundberg E, Carling T, Brandstrom H, Huang S, Ribom EL, Ljunggren O, Mallmin H, Kindmark A (2004) A deletion polymorphism in the RIZ gene, a female sex steroid hormone receptor coactivator, exhibits decreased response to estrogen in vitro and associates with low bone mineral density in young Swedish women. J Clin Endocrinol Metab 89:6173–6178

    Article  CAS  PubMed  Google Scholar 

  34. McCloskey EV, Spector TD, Eyres KS, Fern ED, O’Rourke N, Vasikaran S, Kanis JA (1993) The assessment of vertebral deformity: a method for use in population studies and clinical trials. Osteoporos Int 3:138–147

    Article  CAS  PubMed  Google Scholar 

  35. Genant HK, Grampp S, Gluer CC, Faulkner KG, Jergas M, Engelke K, Hagiwara S, Van Kuijk C (1994) Universal standardization for dual X-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 9:1503–1514

    Article  CAS  PubMed  Google Scholar 

  36. Kunkel LM, Smith KD, Boyer SH, Borgaonkar DS, Wachtel SS, Miller OJ, Breg WR, Jones HW Jr, Rary JM (1977) Analysis of human Y-chromosome-specific reiterated DNA in chromosome variants. Proc Natl Acad Sci USA 74:1245–1249

    Article  CAS  PubMed  Google Scholar 

  37. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005;21:263–265

    Google Scholar 

  38. Herold C, Becker T (2009) Genetic association analysis with FAMHAP: a major program update. Bioinformatics 25:134–136

    Article  CAS  PubMed  Google Scholar 

  39. Silvestri S, Thomsen AB, Gozzini A, Bagger Y, Christiansen C, Brandi ML (2006) Estrogen receptor alpha and beta polymorphisms: is there an association with bone mineral density, plasma lipids, and response to postmenopausal hormone therapy? Menopause 13:451–461

    Google Scholar 

  40. Wang JT, Guo Y, Yang TL, Xu XH, Dong SS, Li M, Li TQ, Chen Y, Deng HW (2008) Polymorphisms in the estrogen receptor genes are associated with hip fractures in Chinese. Bone 43:910–914

    Article  CAS  PubMed  Google Scholar 

  41. Ioannidis JP, Ng MY, Sham PC, Zintzaras E, Lewis CM, Deng HW, Econs MJ, Karasik D, Devoto M, Kammerer CM, Spector T, Andrew T, Cupples LA, Duncan EL, Foroud T, Kiel DP, Koller D, Langdahl B, Mitchell BD, Peacock M, Recker R, Shen H, Sol-Church K, Spotila LD, Uitterlinden AG, Wilson SG, Kung AW, Ralston SH (2007) Meta-analysis of genome-wide scans provides evidence for sex- and site-specific regulation of bone mass. J Bone Miner Res 22:173–183

    Article  CAS  PubMed  Google Scholar 

  42. Meier C, Nguyen TV, Handelsman DJ, Schindler C, Kushnir MM, Rockwood AL, Meikle AW, Center JR, Eisman JA, Seibel MJ (2008) Endogenous sex hormones and incident fracture risk in older men: the Dubbo Osteoporosis Epidemiology Study. Arch Intern Med 168:47–54

    Article  CAS  PubMed  Google Scholar 

  43. Grundberg E, Akesson K, Kindmark A, Gerdhem P, Holmberg A, Mellstrom D, Ljunggren O, Orwoll E, Mallmin H, Ohlsson C, Brandstrom H (2007) The impact of estradiol on bone mineral density is modulated by the specific estrogen receptor-alpha cofactor retinoblastoma-interacting zinc finger protein-1 insertion/deletion polymorphism. J Clin Endocrinol Metab 92:2300–2306

    Article  CAS  PubMed  Google Scholar 

  44. Kaminsky Z, Wang SC, Petronis A (2006) Complex disease, gender and epigenetics. Ann Med 38:530–544

    Article  CAS  PubMed  Google Scholar 

  45. Albagha OM, Pettersson U, Stewart A, McGuigan FE, MacDonald HM, Reid DM, Ralston SH (2005) Association of oestrogen receptor alpha gene polymorphisms with postmenopausal bone loss, bone mass, and quantitative ultrasound properties of bone. J Med Genet 42:240–246

    Article  CAS  PubMed  Google Scholar 

  46. Moron FJ, Mendoza N, Vazquez F, Molero E, Quereda F, Salinas A, Fontes J, Martinez-Astorquiza T, Sanchez-Borrego R, Ruiz A (2006) Multilocus analysis of estrogen-related genes in Spanish postmenopausal women suggests an interactive role of ESR1, ESR2 and NRIP1 genes in the pathogenesis of osteoporosis. Bone 39:213–221

    Article  CAS  PubMed  Google Scholar 

  47. Massart F, Marini F, Bianchi G, Minisola S, Luisetto G, Pirazzoli A, Salvi S, Micheli D, Masi L, Brandi ML (2009) Age-specific effects of estrogen receptors’ polymorphisms on the bone traits in healthy fertile women: the BONTURNO study. Reprod Biol Endocrinol 7:32

    Google Scholar 

  48. Scariano JK, Simplicio SG, Montoya GD, Garry PJ, Baumgartner RN (2004) Estrogen receptor beta dinucleotide (CA) repeat polymorphism is significantly associated with bone mineral density in postmenopausal women. Calcif Tissue Int 74:501–508

    Article  CAS  PubMed  Google Scholar 

  49. Geng L, Yao Z, Yang H, Luo J, Han L, Lu Q (2007) Association of CA repeat polymorphism in estrogen receptor beta gene with postmenopausal osteoporosis in Chinese. J Genet Genomics 34:868–876

    Article  CAS  PubMed  Google Scholar 

  50. Stolk L, van Meurs JB, Arp PP, Hofman A, Pols HA, Uitterlinden AG (2008) The RIZ Pro704 insertion–deletion polymorphism, bone mineral density and fracture risk: the Rotterdam study. Bone 42:286–293

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Harsløf.

Additional information

The authors have stated that they have no conflict of interest.

T. Harsløf and L. B. Husted contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harsløf, T., Husted, L.B., Carstens, M. et al. Genotypes and Haplotypes of the Estrogen Receptor Genes, but Not the Retinoblastoma-interacting Zinc Finger Protein 1 Gene, Are Associated with Osteoporosis. Calcif Tissue Int 87, 25–35 (2010). https://doi.org/10.1007/s00223-010-9375-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9375-y

Keywords

Navigation