Skip to main content

Advertisement

Log in

Microarchitecture of the Radial Head and Its Changes in Aging

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Fractures of the radial head are common; however, it remains to be determined whether the radial head has to be considered as a typical location for fractures associated with osteoporosis. To investigate whether the human radial head shows structural changes during aging, we analyzed 30 left and 30 right human radial heads taken from 30 individuals. The specimens taken from the left side were analyzed by peripheral quantitative computed tomography (pQCT) and micro-CT. The specimens taken from the right elbow joint were analyzed by radiography and histomorphometry. In these specimens pQCT revealed a significant decrease of total and cortical bone mineral density (BMDto BMDco) with aging, regardless of sex. Histomorphometry revealed a significant reduction of cortical thickness (Ct.Th), bone volume per tissue volume (BV/TV), and trabecular thickness (Tb.Th) in male and female specimens. In this context, mean BV/TV and mean trabecular number (Tb.N) values were significantly lower and, accordingly, mean trabecular separation (Tb.Sp) was significantly higher in female samples. The presented study demonstrates that the radial head is a skeletal site where different age- and sex-related changes of the bone structure become manifest. These microarchitectural changes might contribute to the pathogenesis of radial head fractures, especially in aged female patients where trabecular parameters (BMDtr and Tb.Sp) change significantly for the worse compared to male patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Herbertsson P, Josefsson PO, Hasserius R, Besjakov J, Nyqvist F, Karlsson MK (2004) Fractures of the radial head and neck treated with radial head excision. J Bone Joint Surg Am 86:1925–1930

    PubMed  Google Scholar 

  2. Herbertsson P, Josefsson PO, Hasserius R, Karlsson C, Besjakov J, Karlsson M (2004) Uncomplicated Mason type-II and III fractures of the radial head and neck in adults. A long-term follow-up study. J Bone Joint Surg Am 86:569–574

    PubMed  Google Scholar 

  3. Mason ML (1954) Some observations on fractures of the head of the radius with review of one hundred cases. Br J Surg 42:123–132

    Article  CAS  PubMed  Google Scholar 

  4. Ikeda M, Sugiyama K, Kang C, Takagaki T, Oka Y (2005) Comminuted fractures of the radial head. Comparison of resection and internal fixation. J Bone Joint Surg Am 87:76–84

    Article  PubMed  Google Scholar 

  5. Radin EL, Riseborough EJ (1966) Fractures of the radial head. A review of eighty-eight cases and analysis of the indications for excisison of the radial head and operative treatment. J Bone Joint Surg Am 48:1055–1064

    CAS  PubMed  Google Scholar 

  6. Gebauer M, Rücker AH, Barvencik F, Rueger JM (2005) Therapy for radial head fractures. Unfallchirurg 108:657–667

    Article  CAS  PubMed  Google Scholar 

  7. Brown SA, Rosen CJ (2003) Osteoporosis. Med Clin North Am 87:1039–1063

    Article  PubMed  Google Scholar 

  8. Rodan GA, Martin TJ (1981) Role of osteoblasts in hormonal control of bone resorption—a hypothesis. Calcif Tissue Int 33:349–351

    Article  CAS  PubMed  Google Scholar 

  9. Schneider P, Reiners C, Cointry GR, Capozza RF, Ferretti JL (2001) Bone quality parameters of the distal radius as assessed by pQCT in normal and fractured women. Osteoporos Int 12:639–646

    Article  CAS  PubMed  Google Scholar 

  10. Amling M, Herden S, Pösl M, Hahn M, Ritzel H, Delling G (1996) Heterogeneity of the skeleton: comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus. J Bone Mineral Res 11:36–45

    CAS  Google Scholar 

  11. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 2:595–610

    CAS  PubMed  Google Scholar 

  12. Amling M, Hahn M, Wening VJ, Grote HJ, Delling G (1994) The microarchitecture of the axis as the predisposing factor for fracture of the base of the odontoid process. A histomorphometric analysis of twenty-two autopsy specimens. J Bone Joint Surg Am 76:1840–1846

    CAS  PubMed  Google Scholar 

  13. Amis AA, Miller JH (1995) The mechanisms of elbow fractures: an investigation using impact tests in vitro. Injury 26:163–168

    Article  CAS  PubMed  Google Scholar 

  14. Kimmel DB (1993) A paradigm for skeletal strength homeostasis. J Bone Miner Res 8:515–522

    Google Scholar 

  15. Ross PD, Wasnich RD, Davis JW (1990) Fracture prediction models for osteoporosis prevention. Bone 11:327–331

    Article  CAS  PubMed  Google Scholar 

  16. Currey JD (2003) The many adaptations of bone. J Biomech 36:1487–1495

    Article  CAS  PubMed  Google Scholar 

  17. Keaveny TM, Hayes WC (1993) A 20-year perspective on the mechanical properties of trabecular bone. J Biomech Eng 115:534–542

    Article  CAS  PubMed  Google Scholar 

  18. Eckstein F, Kuhn V, Lochmüller EM (2004) Strength prediction of the distal radius by bone densitometry—evaluation using biomechanical tests. Ann Biomed Eng 32:487–503

    Article  PubMed  Google Scholar 

  19. Lochmüller EM, Kristin J, Matsuura M, Kuhn V, Hudelmaier M, Link TM, Eckstein F (2008) Measurement of trabecular bone microstructure does not improve prediction of mechanical failure loads at the distal radius compared with bone mass alone. Calcif Tissue Int 83:293–299

    Article  PubMed  CAS  Google Scholar 

  20. Gebauer M, Lohse C, Barvencik F, Pogoda P, Rueger JM, Püschel K, Amling M (2006) Subdental synchondrosis and anatomy of the axis in aging. A histomorphometric study on 30 autopsy cases. Eur Spine J 15:292–298

    Article  PubMed  Google Scholar 

  21. Rupprecht M, Pogoda P, Mumme M, Rueger JM, Püschel K, Amling M (2006) Bone microarchitecture of the calcaneus and its changes in aging: a histomorphometric analysis of 60 human specimens. J Orthop Res 24:664–674

    Article  PubMed  Google Scholar 

  22. Müller R (2003) Bone microarchitecture assessment: current and future trends. Osteoporos Int 5:89–95

    Article  Google Scholar 

  23. Gordon KD, Duck TR, King GJ, Johnson JA (2003) Mechanical properties of subchondral cancellous bone of the radial head. J Orthop Trauma 17:285–289

    Article  PubMed  Google Scholar 

  24. Eckstein F, Jacobs CR, Merz BR (1997) Mechanobiological adaptation of subchondral bone as a function of joint incongruity and loading. Med Eng Phys 19:720–728

    Article  CAS  PubMed  Google Scholar 

  25. Eckstein F, Muller-Gerbl M, Steinlechner M, Kierse R, Putz R (1995) Subchondral bone density in the human elbow assessed by computed tomography osteoabsorptiometry: a reflection of the loading history of the joint surfaces. J Orthop Res 13:268–278

    Article  CAS  PubMed  Google Scholar 

  26. Koslowsky TC, Mader K, Brandenburg A, Hellmich M, Koebke J (2008) Subchondral bone density of the radial head measured with subtraction densitometry. Surg Radiol Anat 30:113–118

    Article  CAS  PubMed  Google Scholar 

  27. Formica CA, Nieves JW, Cosman F, Garrett P, Lindsay R (1998) Comparative assessment of bone mineral measurements using dual X-ray absorptiometry and peripheral quantitative computed tomography. Osteoporos Int 8:460–467

    Article  CAS  PubMed  Google Scholar 

  28. Grampp S, Lang P, Jergas M, Glüer CC, Mathur A, Engelke K (1995) Assessment of the skeletal status by peripheral quantitative computed tomography of the forearm: short-term precision in vivo and comparison to dual X-ray absorptiometry. J Bone Miner Res 10:1566–1576

    Article  CAS  PubMed  Google Scholar 

  29. Ashe MC, Khan KM, Kontulainen SA, Guy P, Liu D, Beck TJ, McKay HA (2006) Accuracy of pQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation. Osteoporos Int 17:1241–1251

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Claudia Mueldner for excellent technical assistance in preparing the samples for qualitative and quantitative histomorphometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Gebauer.

Additional information

Matthias Gebauer, Florian Barvencik and Marcus Mumme contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebauer, M., Barvencik, F., Mumme, M. et al. Microarchitecture of the Radial Head and Its Changes in Aging. Calcif Tissue Int 86, 14–22 (2010). https://doi.org/10.1007/s00223-009-9304-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9304-0

Keywords

Navigation