Skip to main content

Advertisement

Log in

A Preliminary Investigation into the Effects of X-Ray Radiation on Superficial Cranial Vascularization

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Radiation therapy (RT) is an established treatment modality for malignant neoplasms. RT induces tissue damage that may lead to osteoradionecrosis in more severe cases. Suitable animal models to study RT-induced changes in membranous craniofacial bone are currently not available. The aim of this study was therefore to quantify RT-induced changes in cranial microcirculation using a newly developed calvaria chamber model and to relate these changes to RT-induced histological damage. New Zealand white rabbits received a total radiation dose of 18.75 Gy through the calvaria chamber, and the number of vessels, the vessel length density (VLD), and angiogenic sprouting were quantified on a weekly basis during a 12-week period. At the end of 12 weeks, the RT-treated (n = 5) or control (n = 5) calvarias were biopsied for histopathological analysis. RT resulted in a steep reduction in the number of vessels and the VLD during the first 3 weeks, particularly in larger-diameter vessels, followed by a flat stabilization/remodeling phase in the subsequent 9 weeks that never restored to baseline values. Histomorphometric analysis revealed a high degree of osteocytic depletion, prominent hypocellularity in the lacunae and intraosseous vasculature, enlarged and nonconcentric Haversian systems, and a severely disorganized bone matrix in the RT-treated calvarias. Despite the prevalence of some angiogenic potential, the RT-induced effects in the early phase persisted in the intermediate to late phase, which may have contributed to the poor recovery of the RT-treated bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mendes RL, Nutting CM, Harrington KJ (2002) Managing side effects of radiotherapy in head and neck cancer. Hosp Med 63:712–717

    PubMed  CAS  Google Scholar 

  2. Bond WR Jr, Matthews JL, Finney JW (1967) The influence of regional oxygenation on osteoradionecrosis. Oral Surg Oral Med Oral Pathol 23:99–113

    Article  PubMed  Google Scholar 

  3. Marx RE (1983) Osteoradionecrosis: a new concept of its pathophysiology. J Oral Maxillofac Surg 41:283–288

    Article  PubMed  CAS  Google Scholar 

  4. Pappas GC (1969) Bone changes in osteoradionecrosis. A review. Oral Surg Oral Med Oral Pathol 27:622–630

    Article  CAS  Google Scholar 

  5. Carano RA, Filvaroff EH (2003) Angiogenesis and bone repair. Drug Discov Today 8:980–989

    Article  PubMed  CAS  Google Scholar 

  6. Hom DB, Adams GL, Monyak D (1995) Irradiated soft tissue and its management. Otolaryngol Clin North Am 28:1003–1019

    PubMed  CAS  Google Scholar 

  7. Urken ML, Buchbinder D, Costantino PD, Sinha U, Okay D, Lawson W, Biller HF (1998) Oromandibular reconstruction using microvascular composite flaps: report of 210 cases. Arch Otolaryngol Head Neck Surg 124:46–55

    PubMed  CAS  Google Scholar 

  8. Kroll SS, Schusterman MA, Reece GP, Miller MJ, Evans GR, Robb GL, Baldwin BJ (1996) Choice of flap and incidence of free flap success. Plast Reconstr Surg 98:459–463

    Article  PubMed  CAS  Google Scholar 

  9. Winet H (1996) The role of microvasculature in normal and perturbed bone healing as revealed by intravital microscopy. Bone 19:39S–57S

    Article  PubMed  CAS  Google Scholar 

  10. Penel G, Delfosse C, Descamps M, Leroy G (2005) Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone 36:893–901

    Article  PubMed  CAS  Google Scholar 

  11. Takahashi S, Sugimoto M, Kotoura Y, Sasai K, Oka M, Yamamuro T (1994) Long-term changes in the haversian systems following high-dose irradiation. An ultrastructural and quantitative histomorphological study. J Bone Joint Surg Am 76:722–738

    PubMed  CAS  Google Scholar 

  12. Lopes CB, Pinheiro AL, Sathaiah S, Duarte J, Cristinamartins M (2005) Infrared laser light reduces loading time of dental implants: a Raman spectroscopic study. Photomed Laser Surg 23:27–31

    Article  PubMed  CAS  Google Scholar 

  13. International Atomic Energy Agency (2005) Radiation oncology physics: a handbook for teachers and students. E.B. Podgorsak, sponsored by IAEA, Vienna

    Google Scholar 

  14. Arnold M, Stas P, Kummermehr J, Schultz-Hector S, Trott KR (1998) Radiation-induced impairment of bone healing in the rat femur: effects of radiation dose, sequence and interval between surgery and irradiation. Radiother Oncol 48:259–265

    Article  PubMed  CAS  Google Scholar 

  15. Wolf E, Roser K, Hahn M, Welkerling H, Delling G (1992) Enzyme and immunohistochemistry on undecalcified bone and bone marrow biopsies after embedding in plastic: a new embedding method for routine application. Virchows Arch A Pathol Anat Histopathol 420:17–24

    Article  PubMed  CAS  Google Scholar 

  16. Wood B, McNaughton D (2002) Raman excitation wavelength investigation of single red blood cells in vitro. J Raman Spectrosc 33:517–523

    Article  CAS  Google Scholar 

  17. Wood B, Caspers P, Puppels GJ, Pandiancherri S, McNaughton D (2007) Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation. Anal Bioanal Chem 387:1691–1703

    Article  PubMed  CAS  Google Scholar 

  18. Lakshmi RJ, Alexander M, Kurien J, Mahato KK, Kartha VB (2003) Osteoradionecrosis (ORN) of the mandible: a laser Raman spectroscopic study. Appl Spectrosc 57:1100–1116

    Article  PubMed  CAS  Google Scholar 

  19. Penel G, Leroy G, Rey C, Bres E (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63:475–481

    Article  PubMed  CAS  Google Scholar 

  20. Penel G, Leroy G, Rey C, Sombret B, Huvenne JP, Bres E (1997) Infrared and Raman microspectrometry study of fluor-fluor-hydroxy and hydroxy-apatite powders. J Mater Sci Mater Med 8:271–276

    Article  PubMed  CAS  Google Scholar 

  21. Legeros RZ (1994) Biological and synthetic apatites. In: Brown P, Constantz BE (eds) Hydroxyapatites and related compounds. CRC Press, Boca Raton, FL, pp 3–28

    Google Scholar 

  22. Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ (1989) The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164

    Article  PubMed  CAS  Google Scholar 

  23. Malizos KN, Papatheodorou LK (2005) The healing potential of the periosteum molecular aspects. Injury 36(Suppl 3):S13–S19

    Article  PubMed  Google Scholar 

  24. Aitasalo K (1986) Bone tissue response to irradiation and treatment model of mandibular irradiation injury. An experimental and clinical study. Acta Otolaryngol Suppl 428:1–54

    PubMed  CAS  Google Scholar 

  25. Okunieff P, Wang X, Rubin P, Finkelstein JN, Constine LS, Ding I (1998) Radiation-induced changes in bone perfusion and angiogenesis. Int J Radiat Oncol Biol Phys 42:885–889

    PubMed  CAS  Google Scholar 

  26. Neuman WF (1969) The milieu interieur of bone: Claude Bernard revisited. Fed Proc 28:1846–1850

    PubMed  CAS  Google Scholar 

  27. McCarthy I (2006) The physiology of bone blood flow: a review. J Bone Joint Surg Am 88(Suppl 3):4–9

    Article  PubMed  Google Scholar 

  28. Briggs PJ, Moran CG, Wood MB (1998) Actions of endothelin-1, 2, and 3 in the microvasculature of bone. J Orthop Res 16:340–347

    Article  PubMed  CAS  Google Scholar 

  29. Brinker MR, Lippton HL, Cook SD, Hyman AL (1990) Pharmacological regulation of the circulation of bone. J Bone Joint Surg Am 72:964–975

    PubMed  CAS  Google Scholar 

  30. Dimitrievich GS, Fischer-Dzoga K, Griem ML (1984) Radiosensitivity of vascular tissue. I. Differential radiosensitivity of capillaries: a quantitative in vivo study. Radiat Res 99:511–535

    Article  PubMed  CAS  Google Scholar 

  31. O’Connor MM, Mayberg MR (2000) Effects of radiation on cerebral vasculature: a review. Neurosurgery 46:138–149; discussion 150–151

    Article  PubMed  Google Scholar 

  32. Fischer-Dzoga K, Dimitrievich GS, Griem ML (1984) Radiosensitivity of vascular tissue. II. Differential radiosensitivity of aortic cells in vitro. Radiat Res 99:536–546

    Article  PubMed  CAS  Google Scholar 

  33. Jacobsson M, Albrektsson T, Turesson I (1985) Dynamics of irradiation injury to bone tissue. A vital microscopic investigation. Acta Radiol Oncol 24:343–350

    Article  PubMed  CAS  Google Scholar 

  34. Jee W, Arnold JS (1960) Effect of internally deposited radioisotopes upon blood vessels of cortical bones. Proc Soc Exp Biol Med 105:351–356

    PubMed  CAS  Google Scholar 

  35. Kenzora JE, Steele RE, Yosipovitch ZH, Glimcher MJ (1978) Experimental osteonecrosis of the femoral head in adult rabbits. Clin Orthop Relat Res:8–46

  36. King MA, Casarett GW, Weber DA (1979) A study of irradiated bone: I. histopathologic and physiologic changes. J Nucl Med 20:1142–1149

    PubMed  CAS  Google Scholar 

  37. LaRue S, Wrigley RH, Powers BE (1987) A review of the effects of radiation-therapy on bone. Vet Radiol 28:17–22

    Article  Google Scholar 

  38. Fajardo LF (1982) Pathology of radiation injury. Masson, New York

    Google Scholar 

  39. Narayan K, Cliff WJ (1982) Morphology of irradiated microvasculature: a combined in vivo and electron-microscopic study. Am J Pathol 106:47–62

    PubMed  CAS  Google Scholar 

  40. Chen T, Burke KA, Zhan Y, Wang X, Shibata D, Zhao Y (2007) IL-12 facilitates both the recovery of endogenous hematopoiesis and the engraftment of stem cells after ionizing radiation. Exp Hematol 35:203–213

    Article  PubMed  CAS  Google Scholar 

  41. Desmons SO, Delfosse CJ, Rochon P, Buys B, Penel G, Mordon S (2008) Laser preconditioning of calvarial bone prior to an X-ray radiation injury: a preliminary in vivo study of the vascular response. Lasers Surg Med 40:28–37

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Vincent Everts (Academic Center for Dentistry Amsterdam, Vrije Universiteit) for assistance with histological analysis and Dr. Jan van Marle (Department of Cell Biology and Histology, Academic Medical Center) for assistance with the microscopic techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Desmons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desmons, S., Heger, M., Delfosse, C. et al. A Preliminary Investigation into the Effects of X-Ray Radiation on Superficial Cranial Vascularization. Calcif Tissue Int 84, 379–387 (2009). https://doi.org/10.1007/s00223-009-9217-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-009-9217-y

Keywords

Navigation