Skip to main content

Advertisement

Log in

Bone Tissue Stiffness in the Mandibular Condyle is Dependent on the Direction and Density of the Cancellous Structure

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Variation in the apparent stiffness of cancellous bone is generally ascribed to variation in cancellous structure and density, while the bone tissue stiffness is assumed to be constant. The purpose of the present study was to examine whether the bone tissue stiffness is dependent on the direction and density of the cancellous structure. Bone tissue stiffness was estimated by combining mechanical testing and micro-finite element (micro-FE) modeling on cylindrical bone specimens obtained from the human mandibular condyle. One set of specimens was tested in the vertical direction of the condyle (n = 39) and another set in the transverse direction (n = 30). The cancellous structure of the specimens was characterized by micro-CT. The apparent bone stiffnesses predicted by the FE model correlated strongly (r2 = 0.91) with the measured apparent bone stiffnesses. Apparent bone stiffness in the transverse direction was considerably smaller than that in the vertical direction. In contrast, the predicted bone tissue stiffness was significantly larger in the transverse direction (E = 13.70 GPa) than in the vertical direction (E = 11.87 GPa). In addition, bone tissue stiffness correlated negatively with the bone volume fraction and directional sensitivity of the bone tissue stiffness increased with a decrease of bone volume fraction. The results suggest that the transversely oriented trabeculae in the mandibular condyle are stiffer and more mineralized than the vertically oriented trabeculae and that bone loss is compensated by an increase in the degree of mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. R Hodgskinson JD Currey (1990) ArticleTitleEffects of structural variation on Young’s modulus of non-human cancellous bone Proc Inst Mech Eng H 204 43–52 Occurrence Handle1:STN:280:By%2BB1c3otVA%3D Occurrence Handle2353992

    CAS  PubMed  Google Scholar 

  2. RW Goulet SA Goldstein MJ Ciarelli et al. (1994) ArticleTitleThe relationship between the structural and orthogonal compressive properties of trabecular bone J Biomech 27 375–389 Occurrence Handle10.1016/0021-9290(94)90014-0 Occurrence Handle1:STN:280:ByuB2crns1c%3D Occurrence Handle8188719

    Article  CAS  PubMed  Google Scholar 

  3. D Ulrich B Rietbergen ParticleVan A Laib P Rüegsegger (1999) ArticleTitleThe ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone Bone 25 55–60 Occurrence Handle10.1016/S8756-3282(99)00098-8 Occurrence Handle1:STN:280:DyaK1MzkvFyrtw%3D%3D Occurrence Handle10423022

    Article  CAS  PubMed  Google Scholar 

  4. EBW Giesen M Ding M Dalstra TMGJ Eijden ParticleVan (2001) ArticleTitleMechanical properties of cancellous bone in the human mandibular condyle are anisotropic J Biomech 34 799–803

    Google Scholar 

  5. LA Feldkamp SA Goldstein AM Parfitt et al. (1989) ArticleTitleThe direct examination of three-dimensional bone architecture in vitro by computed tomography J Bone Miner Res 4 3–11 Occurrence Handle1:STN:280:BiaB2cvislY%3D Occurrence Handle2718776

    CAS  PubMed  Google Scholar 

  6. SJ Hollister JM Brennan N Kikuchi (1994) ArticleTitleA homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress J Biomech 27 433–444

    Google Scholar 

  7. B Rietbergen ParticleVan H Weinans R Huiskes A Odgaard (1995) ArticleTitleA new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models J Biomech 28 69–79 Occurrence Handle7852443

    PubMed  Google Scholar 

  8. B Rietbergen ParticleVan H Weinans R Huiskes BJW Polman (1996) ArticleTitleComputational strategies for iterative solutions of large FEM applications employing voxel data Int J Numer Meth Eng 39 2743–2767 Occurrence Handle10.1002/(SICI)1097-0207(19960830)39:16<2743::AID-NME974>3.3.CO;2-1

    Article  Google Scholar 

  9. FJ Hou SM Lang SJ Hoshaw et al. (1998) ArticleTitleHuman vertebral body apparent and hard tissue stiffness J Biomech 31 1009–1015

    Google Scholar 

  10. J Kabel B Rietbergen ParticleVan M Dalstra et al. (1999) ArticleTitleThe role of an effective isotropic tissue modulus in the elastic properties of cancellous bone J Biomech 32 673–680

    Google Scholar 

  11. CR Jacobs BR Davis CJ Rieger et al. (1999) ArticleTitleThe impact of boundary condition and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling J Biomech 32 1159–1164

    Google Scholar 

  12. JD Currey (1984) ArticleTitleEffects of differences in mineralization on the mechanical properties of bone Phil Trans R Soc Lond 304 509–518 Occurrence Handle1:STN:280:BiuC2crhsVw%3D

    CAS  Google Scholar 

  13. RB Martin DB Burr (1989) Structure, function and adaptation of compact bone Raven Press New York

    Google Scholar 

  14. AM Parfitt CHE Mathews AR Villanueva et al. (1983) ArticleTitleRelationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis: implications for the microanatomic and cellular mechanisms of bone loss J Clin Invest 72 1396–1409 Occurrence Handle1:STN:280:BiuD3szhs1w%3D Occurrence Handle6630513

    CAS  PubMed  Google Scholar 

  15. JY Rho TY Tsui GM Pharr (1997) ArticleTitleElastic properties of human cortical and trabecular lamellar bone measured by nanoindentation Biomaterials 18 1325–1330 Occurrence Handle10.1016/S0142-9612(97)00073-2 Occurrence Handle1:CAS:528:DyaK2sXntVSlurc%3D Occurrence Handle9363331

    Article  CAS  PubMed  Google Scholar 

  16. CH Turner J Rho Y Takano et al. (1999) ArticleTitleThe elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques J Biomech 32 437–441 Occurrence Handle10.1016/S0021-9290(98)00177-8 Occurrence Handle1:STN:280:DyaK1M3ivVShsQ%3D%3D Occurrence Handle10213035

    Article  CAS  PubMed  Google Scholar 

  17. PK Zysset XE Guo CE Hoffler et al. (1999) ArticleTitleElastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur J Biomech 32 1005–1012 Occurrence Handle10.1016/S0021-9290(99)00111-6 Occurrence Handle1:STN:280:DyaK1MvgsVCrug%3D%3D Occurrence Handle10476838

    Article  CAS  PubMed  Google Scholar 

  18. JC Linden ParticleVan der DH Birkenhäger-Frenkel JA Verhaar H Weinans (2001) ArticleTitleTrabecular bone’s mechanical properties are affected by its non-uniform mineral distribution J Biomech 34 1573–1580

    Google Scholar 

  19. MJ Jaasma HH Bayraktar GL Niebur TM Keaveny (2002) ArticleTitleBiomechanical effects of intraspecimen variations in tissue modulus for trabecular bone J Biomech 35 237–246

    Google Scholar 

  20. J Homminga R Huiskes B Rietbergen ParticleVan et al. (2001) ArticleTitleIntroduction and evaluation of a gray-value voxel conversion technique J Biomech 34 513–517

    Google Scholar 

  21. EBW Giesen TMGJ Eijden ParticleVan (2000) ArticleTitleThe three-dimensional cancellous bone architecture of the human mandibular condyle J Dent Res 79 957–963 Occurrence Handle1:STN:280:DC%2BD3c3ovF2ntg%3D%3D Occurrence Handle10831098

    CAS  PubMed  Google Scholar 

  22. LJ Ruijven ParticleVan EBW Giesen TMGJ Eijden ParticleVan (2002) ArticleTitleMechanical significance of the trabecular microstructure of the human mandibular condyle J Dent Res 81 706–710 Occurrence Handle12351670

    PubMed  Google Scholar 

  23. DR Carter WC Hayes (1977) ArticleTitleThe compressive behavior of bone as a two-phase porous structure J Bone Joint Surg Am 59 954–962 Occurrence Handle1:STN:280:CSeD3crmtVU%3D Occurrence Handle561786

    CAS  PubMed  Google Scholar 

  24. EBW Giesen M Ding M Dalstra TMGJ Eijden ParticleVan (2003) ArticleTitleReduced mechanical load decreases the density, stiffness, and strength of cancellous bone of the mandibular condyle Clin Biomech 18 358–363 Occurrence Handle10.1016/S0268-0033(03)00018-4 Occurrence Handle1:STN:280:DC%2BD3s7ntVyqsQ%3D%3D

    Article  CAS  Google Scholar 

  25. P Roschger P Fratzl K Klaushofer G Rodan (1997) ArticleTitleMineralization of cancellous bone after alendronate and sodium fluoride treatment: a quantitative backscattered electron imaging study on minipig ribs Bone 20 393–397 Occurrence Handle10.1016/S8756-3282(97)00018-5 Occurrence Handle1:CAS:528:DyaK2sXjsV2iur0%3D Occurrence Handle9145235

    Article  CAS  PubMed  Google Scholar 

  26. K Choi JL Kuhn MJ Ciarelli SA Goldstein (1990) ArticleTitleThe elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus J Biomech 23 1103–1113 Occurrence Handle10.1016/0021-9290(90)90003-L Occurrence Handle1:STN:280:By6C3MrptVc%3D Occurrence Handle2277045

    Article  CAS  PubMed  Google Scholar 

  27. PHF Nicholson XG Cheng G Lowet et al. (1997) ArticleTitleStructural and material mechanical properties of human vertebral cancellous bone Med Eng Phys 19 729–737 Occurrence Handle10.1016/S1350-4533(97)00030-1 Occurrence Handle1:STN:280:DyaK1c7htF2htQ%3D%3D Occurrence Handle9450257

    Article  CAS  PubMed  Google Scholar 

  28. GL Niebur MJ Feldstein JC Yuen et al. (2000) ArticleTitleHigh-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone J Biomech 33 1575–1583

    Google Scholar 

  29. EF Eriksen DW Axelrod F Melsen (1994) Bone histomorphometry Raven Press New York

    Google Scholar 

  30. AM Parfitt B Chir (1987) ArticleTitleBone remodeling and bone loss: understanding the pathophysiology of osteoporosis Clin Obstet Gynecol 30 789–811 Occurrence Handle1:STN:280:BieD1c7hsVQ%3D Occurrence Handle3319313

    CAS  PubMed  Google Scholar 

  31. L Mosekilde (1989) ArticleTitleSex differences in age-related loss of vertebral trabecular bone mass and structure-biomechanical consequences Bone 10 425–432 Occurrence Handle10.1016/8756-3282(89)90074-4 Occurrence Handle1:STN:280:By%2BC28npsVE%3D Occurrence Handle2624823

    Article  CAS  PubMed  Google Scholar 

  32. K Oda Y Shibayama M Abe T Onomura (1998) ArticleTitleMorphogenesis of vertebral deformities in involutional osteoporosis Spine 23 1050–1056 Occurrence Handle10.1097/00007632-199805010-00016 Occurrence Handle1:STN:280:DyaK1c3ltFCmsg%3D%3D Occurrence Handle9589545

    Article  CAS  PubMed  Google Scholar 

  33. JS Thomsen EN Ebbesen L Mosekilde (2002) ArticleTitleAge-related differences between thinning of horizontal and vertical trabeculae in human lumbar bone as assessed by a new computerized method Bone 31 136–142 Occurrence Handle10.1016/S8756-3282(02)00801-3 Occurrence Handle1:STN:280:DC%2BD38vhtl2ntg%3D%3D Occurrence Handle12110426

    Article  CAS  PubMed  Google Scholar 

  34. RB Ashman JY Rho (1988) ArticleTitleElastic modulus of trabecular bone material J Biomech 21 177–181 Occurrence Handle10.1016/0021-9290(88)90167-4 Occurrence Handle1:STN:280:BieB2czosFU%3D Occurrence Handle3379077

    Article  CAS  PubMed  Google Scholar 

  35. CE Hoffler KE Moore K Kozloff et al. (2000) ArticleTitleHeterogeneity of bone lamellar-level elastic moduli Bone 26 603–609 Occurrence Handle10.1016/S8756-3282(00)00268-4 Occurrence Handle1:STN:280:DC%2BD3c3pt12jtw%3D%3D Occurrence Handle10831932

    Article  CAS  PubMed  Google Scholar 

  36. JC Ladd JH Kinney (1998) ArticleTitleNumerical errors and uncertainties in finite-element modeling of trabecular bone J Biomech 31 941–945

    Google Scholar 

  37. RE Guldberg SJ Hollister GT Charras (1998) ArticleTitleThe accuracy of digital image-based finite element models J Biomech Eng 120 289–295

    Google Scholar 

  38. AJC Ladd JH Kinney DL Haupt SA Goldstein (1998) ArticleTitleFinite-element modeling of trabecular bone: comparison with mechanical testing and determination of tissue modulus J Orthop Res 16 622–628 Occurrence Handle1:STN:280:DyaK1M%2Fjs1Wktg%3D%3D Occurrence Handle9820288

    CAS  PubMed  Google Scholar 

  39. D Ulrich T Hildebrand B Rietbergen ParticleVan et al. (1997) ArticleTitleThe quality of trabecular bone evaluated with micro-computed tomography, FEA and mechanical testing Studies in Health Technol Informat 40 97–112 Occurrence Handle1:STN:280:ByiA1cvjtFE%3D

    CAS  Google Scholar 

  40. F Linde (1994) ArticleTitleElastic and viscoelastic properties of trabecular bone by a compression testing approach Dan Med Bull 41 119–138 Occurrence Handle1:STN:280:ByuA3MzptVQ%3D Occurrence Handle8039429

    CAS  PubMed  Google Scholar 

  41. JS Day M Ding JC Linden ParticleVan der et al. (2001) ArticleTitleA decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage J Orthop Res 19 914–918 Occurrence Handle10.1016/S0736-0266(01)00012-2 Occurrence Handle1:STN:280:DC%2BD3MrhsVCmuw%3D%3D Occurrence Handle11562141

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Irene Aartman for statistical advice, and to Jan Harm Koolstra and Geerling Langenbach for their comments on the manuscript. This work was sponsored by the National Computing Facilities Foundation (NCF) for the use of supercomputing facilities. This research was institutionally supported by the Inter-University Research School of Dentistry, through the Academic Centre for Dentistry Amsterdam. We would like to thank the Academic Computer Services Amsterdam for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. G. J. van Eijden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Eijden, T.M.G.J., van Ruijven, L.J. & Giesen, E.B.W. Bone Tissue Stiffness in the Mandibular Condyle is Dependent on the Direction and Density of the Cancellous Structure. Calcif Tissue Int 75, 502–508 (2004). https://doi.org/10.1007/s00223-004-0295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-004-0295-6

Keywords

Navigation