Skip to main content
Log in

\(\mathbf{C^{2}}\)-Lusin approximation of strongly convex functions

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove that if \(u:\mathbb{R}^{n}\to \mathbb{R}\) is strongly convex, then for every \(\varepsilon >0\) there is a strongly convex function \(v\in C^{2}(\mathbb{R}^{n})\) such that \(|\{u\neq v\}|<\varepsilon \) and \(\Vert u-v\Vert _{\infty}<\varepsilon \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Although the proof of [5] implicitly yields \(v\geq u\), this useful additional property is explicitly stated and proved in [4].

References

  1. Alberti, G.: On the structure of singular sets of convex functions. Calc. Var. Partial Differ. Equ. 2, 17–27 (1994)

    Article  MathSciNet  Google Scholar 

  2. Azagra, D.: Locally \(C^{1,1}\) convex extensions of 1-jets. Rev. Mat. Iberoam. 38, 131–174 (2022)

    Article  MathSciNet  Google Scholar 

  3. Azagra, D.: Global and fine approximation of convex functions. Proc. Lond. Math. Soc. 107(4), 799–824 (2013)

    Article  MathSciNet  Google Scholar 

  4. Azagra, D., Cappello, A., Hajłasz, P.: A geometric approach to second-order differentiability of convex functions. Proc. Am. Math. Soc. Ser. B 10, 382–397 (2023)

    Article  MathSciNet  Google Scholar 

  5. Azagra, D., Hajłasz, P.: Lusin-type properties of convex functions and convex bodies. J. Geom. Anal. 31, 11685–11701 (2021)

    Article  MathSciNet  Google Scholar 

  6. Azagra, D., Stolyarov, D.: Inner and outer smooth approximation of convex hypersurfaces. When is it possible?. Nonlinear Anal. 230, Article ID 113225 (2023)

    Article  MathSciNet  Google Scholar 

  7. Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics, vol. 129. Academic Press, Boston (1988)

    Google Scholar 

  8. Bojarski, B., Hajłasz, P.: Pointwise inequalities for Sobolev functions and some applications. Stud. Math. 106, 77–92 (1993)

    MathSciNet  Google Scholar 

  9. Bojarski, B., Hajłasz, P., Strzelecki, P.: Improved \(C^{k,\lambda}\) approximation of higher order Sobolev functions in norm and capacity. Indiana Univ. Math. J. 51, 507–540 (2002)

    MathSciNet  Google Scholar 

  10. Calderón, A.P., Zygmund, A.: Local properties of solutions of elliptic partial differential equations. Stud. Math. 20, 171–225 (1961)

    Article  MathSciNet  Google Scholar 

  11. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Am. Math. Soc. 137, Article ID 653 (1999)

    MathSciNet  Google Scholar 

  12. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Revised edn. Textbooks in Mathematics. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  13. Imomkulov, S.A.: Twice differentiability of subharmonic functions (Russian). Izv. Ross. Akad. Nauk, Ser. Mat. 56, 877–888 (1992); translation in Russian Acad. Sci. Izv. Math. 41 (1993), 157–167

    Google Scholar 

  14. Liu, F.C.: A Luzin type property of Sobolev functions. Indiana Univ. Math. J. 26, 645–651 (1977)

    Article  MathSciNet  Google Scholar 

  15. Greene, R.E., Wu, H.: \(C^{\infty}\) convex functions and manifolds of positive curvature. Acta Math. 137, 209–245 (1976)

    Article  MathSciNet  Google Scholar 

  16. Malý, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations. Mathematical Surveys and Monographs, vol. 51. Am. Math. Soc., Providence (1997)

    Google Scholar 

  17. Michael, J.H., Ziemer, W.P.: A Lusin type approximation of Sobolev functions by smooth functions. In: Classical Real Analysis, Madison, Wis., 1982. Contemp. Math., vol. 42, pp. 135–167. Am. Math. Soc., Providence (1985)

    Chapter  Google Scholar 

  18. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton, N.J. (1970)

    Book  Google Scholar 

  19. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton, N.J. (1970)

    Google Scholar 

  20. Vial, J.P.: Strong convexity of sets and functions. J. Math. Econ. 9, 187–205 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Funding

D.A. was supported by grant PID2022-138758NB-I00. M.D. was supported by NSF Award No. 2103209. P.H. was supported by NSF grant DMS-2055171 and by Simons Foundation grant 917582.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Hajłasz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azagra, D., Drake, M. & Hajłasz, P. \(\mathbf{C^{2}}\)-Lusin approximation of strongly convex functions. Invent. math. (2024). https://doi.org/10.1007/s00222-024-01252-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00222-024-01252-6

Mathematics Subject Classification

Navigation