Skip to main content
Log in

Quantum difference equation for Nakajima varieties

  • Published:
Inventiones mathematicae Aims and scope

Abstract

For an arbitrary Nakajima quiver variety X, we construct an analog of the quantum dynamical Weyl group acting in its equivariant K-theory. The correct generalization of the Weyl group here is the fundamental groupoid of a certain periodic locally finite hyperplane arrangement in \({{\,\mathrm{Pic}\,}}(X)\otimes {\mathbb {C}}\). We identify the lattice part of this groupoid with the operators of quantum difference equation for X. The cases of quivers of finite and affine type are illustrated by explicit examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Here the threefold need not be Calabi–Yau, to point out a frequent misconception. For example, the equivariant Donaldson-Thomas theory of toric varieties is a very rich subject with many applications in mathematical physics.

  2. \({\mathsf {S}}(u,z)\) is denoted by \({\mathsf {S}}_{\sigma }(u,z)\) in [47] for a shift \(u\rightarrow u q^{\sigma }\) by a specific \({\mathsf {A}}\)-character \(\sigma \).

  3. See Theorem 9.3.1 in [37] for similar statement in the case of equivariant cohomology.

  4. Note, that we use modified quantum parameter z which differs by a sign:

    $$\begin{aligned} z^{{\mathsf {v}}} \mapsto (-1)^{\text {codim}/2} z^{{\mathsf {v}}}, \end{aligned}$$

    see Theorem 10.2.8 in [47]. Explicitly, this change of variables amounts to the following substitution of Kähler parameters:

    $$\begin{aligned} z_i \mapsto (-1)^{2 \kappa _i } z_i \end{aligned}$$

    for canonical vector (81). To get rid of the minus sign, we will use modified notations in this paper. :

  5. In this section we often switch from the variables z, denoting Kähler parameters, to their logarithms \(\lambda \) and back. The two are related via (72).

  6. Note the substitution \(\hbar \rightarrow \hbar ^{2}\) on the left side of this equality which was introduced at the begining of Sect. 6.1.10. We have \(\hbar ^{2 \Omega }={{\,\mathrm{diag}\,}}(1,\hbar ,\hbar ,1)\) and \(\hbar ^{-H \otimes H/2}={{\,\mathrm{diag}\,}}(\hbar ^{-1/2},\hbar ^{1/2},\hbar ^{1/2},\hbar ^{-1/2})=\hbar ^{-1/2}\hbar ^{2 \Omega }\).

  7. The factor 2 in \(\hbar ^{2\kappa }\) is from our conventions introduced at the beginning of Sect. 6.1.10.

  8. This expectation is in agreement with explicit computations of capped vertex functions [47] for the first values of k and n.

  9. Note that we need to substitute \(\hbar \rightarrow \hbar ^{2}\) in the geometric formulas to relate them to the action of \({{\mathscr {U}}_{\hbar }(\widehat{\mathfrak {gl}}_2)}\), as we explain in Sect. 6.1.10.

  10. This expectation is in agreement with explicit computations of the capped vertex functions [47] for the first several values of n and r.

  11. We use a Maple package, implemented by the second author, which computes the action of on the Fock space. The package is available from the author upon request.

References

  1. Aganagic, M., Okounkov, A.: Quasimap counts and Bethe eigenfunctions. Mosc. Math. J. 17(4), 565–600 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aganagic, M., Okounkov, A.: Elliptic stable envelopes. J. Am. Math. Soc. 34(1), 79–133 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnaudon, D., Buffenoir, E., Ragoucy, E., Roche, P.: Universal solutions of quantum dynamical Yang–Baxter equations. Lett. Math. Phys. 44(3), 201–214 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balagović, M.: Degeneration of trigonometric dynamical difference equations for quantum loop algebras to trigonometric Casimir equations for Yangians. Comm. Math. Phys. 334(2), 629–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bezrukavnikov, R., Finkelberg, M.: Wreath Macdonald polynomials and the categorical McKay correspondence. Camb. J. Math. 2(2):163–190 (2014). With an appendix by Vadim Vologodsky

  6. Bezrukavnikov, R., Kaledin, D.: Fedosov quantization in positive characteristic. J. Am. Math. Soc. 21(2), 409–438 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bezrukavnikov, R., Losev, I.: Etingofs conjecture for quantized quiver varieties. Invent. Math. 223(3), 1097–1226 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bezrukavnikov, R., Mirković, I.: Representations of semisimple Lie algebras in prime characteristic and the noncommutative Springer resolution. Ann. Math. (2) 178(3), 835–919 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bezrukavnikov, R., Okounkov, A.: In preparation

  10. Braverman, A., Maulik, D., Okounkov, A.: Quantum cohomology of the Springer resolution. Adv. Math. 227(1), 421–458 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciocan-Fontanine, I., Kim, B., Maulik, D.: Stable quasimaps to GIT quotients. J. Geom. Phys. 75, 17–47 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cox, D.A., Katz, S.: Mirror symmetry and algebraic geometry. Mathematical Surveys and Monographs, vol. 68. American Mathematical Society, Providence, RI (1999)

  13. Dinkins, H.: 3D mirror symmetry of the cotangent bundle of the full flag variety. arXiv e-prints, page arXiv:2011.08603 (2020)

  14. Dinkins, H.: Elliptic stable envelopes of affine type \(A\) quiver varieties. arXiv e-prints, page arXiv:2107.09569 (2021)

  15. Etingof, P.: Symplectic reflection algebras and affine Lie algebras. Mosc. Math. J. 12(3):543–565, 668–669 (2012)

  16. Etingof, P., Schedler, T., Schiffmann, O.: Explicit quantization of dynamical \(r\)-matrices for finite dimensional semisimple Lie algebras. J. Am. Math. Soc. 13(3), 595–609 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Etingof, P., Varchenko, A.: Dynamical Weyl groups and applications. Adv. Math. 167(1), 74–127 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frenkel, I.B., Reshetikhin, N.Y.: Quantum affine algebras and holonomic difference equations. Commun. Math. Phys. 146, 1–60 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Givental, A., Lee, Y.-P.: Quantum \(K\)-theory on flag manifolds, finite-difference Toda lattices and quantum groups. Invent. Math. 151(1), 193–219 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Givental, A., Tonita, V.: The Hirzebruch-Riemann-Roch theorem in true genus-0 quantum K-theory. In Symplectic, Poisson, and noncommutative geometry, vol. 62 of Mathematical Science and Research Institution of Publication, pp 43–91. Cambridge Univ. Press, New York (2014)

  21. Haiman, M.: Notes on Macdonald polynomials and the geometry of Hilbert schemes. In Symmetric functions 2001: surveys of developments and perspectives, volume 74 of NATO Science Series II Mathematical Physics and Chemistry, pp 1–64. Kluwer Acad. Publ., Dordrecht (2002)

  22. Kaledin, D.: Derived equivalences by quantization. Geom. Funct. Anal. 17(6), 1968–2004 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Khoroshkin, S.M., Tolstoy, V.N.: Universal \(R\)-matrix for quantized (super)algebras. Comm. Math. Phys. 141(3), 599–617 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kononov, Y., Okounkov, A., Osinenko, A.: Correction to: The 2-leg vertex in K-theoretic DT theory. Comm. Math. Phys. 388(2), 1129 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kononov, Y., Smirnov, A.: Pursuing quantum difference equations I: stable envelopes of subvarieties. arXiv e-prints, page arXiv:2004.07862 (2020)

  26. Kononov, Y., Smirnov, A.: Pursuing quantum difference equations II: 3D-mirror symmetry. arXiv e-prints, page arXiv:2008.06309 (2020)

  27. Koroteev, P., Pushkar, P.P., Smirnov, A.V., Zeitlin, A.M.: Quantum K-theory of quiver varieties and many-body systems. Selecta Math. (N.S.) 27(5), 40 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Koroteev, P., Zeitlin, A.M.: 3D Mirror Symmetry for Instanton Moduli Spaces. arXiv e-prints, page arXiv:2105.00588 (2021)

  29. Li, J.: Stable morphisms to singular schemes and relative stable morphisms. J. Differ. Geom. 57(3), 509–578 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, J.: A degeneration formula of GW-invariants. J. Differ. Geom. 60(2), 199–293 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, J., Wu, B.: Good degeneration of Quot-schemes and coherent systems. Comm. Anal. Geom. 23(4), 841–921 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Majid, S.: Foundations of quantum group theory. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  33. Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R.: Gromov–Witten theory and Donaldson-Thomas theory. I. Compos. Math. 142(5), 1263–1285 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maulik, D., Nekrasov, N., Okounkov, A., Pandharipande, R.: Gromov–Witten theory and Donaldson–Thomas theory. II. Compos. Math. 142(5), 1286–1304 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Maulik, D., Oblomkov, A.: Quantum cohomology of the Hilbert scheme of points on \(A_n\)-resolutions. J. Am. Math. Soc. 22(4), 1055–1091 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Maulik, D., Oblomkov, A., Okounkov, A., Pandharipande, R.: Gromov–Witten/Donaldson–Thomas correspondence for toric three-folds. Invent. Math. 186(2), 435–479 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Maulik, D., Okounkov, A.: Quantum groups and quantum cohomology. Astérisque, (408):ix+209 (2019)

  38. McGerty, K., Nevins, T.: Kirwan surjectivity for quiver varieties. Invent. Math. 212(1) (2017)

  39. Nakajima, H.: Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras. Duke Math. J. 76(2), 365–416 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nakajima, H.: Quiver varieties and Kac–Moody algebras. Duke Math. J. 91(3), 515–560 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Nakajima, H.: Quiver varieties and finite-dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14(1), 145–238 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Neguţ, A.: The R-matrix of the quantum toroidal algebra. arXiv e-prints, page arXiv:2005.14182 (2020)

  43. Negut, A.: Quantum algebras and cyclic quiver varieties. ProQuest LLC, Ann Arbor, MI (2015). Thesis (Ph.D.)–Columbia University

  44. Nekrasov, N., Okounkov, A.: Membranes and sheaves. Algebr. Geom. 3(3), 320–369 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nekrasov, N.A., Shatashvili, S.L.: Quantum integrability and supersymmetric vacua. Prog. Theor. Phys. Suppl. 177, 105–119 (2009)

    Article  MATH  Google Scholar 

  46. Nekrasov, N.A., Shatashvili, S.L.: Supersymmetric vacua and Bethe ansatz. Nucl. Phys. B Proc. Suppl. 192(193), 91–112 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Okounkov, A.: Lectures on K-theoretic computations in enumerative geometry. In Geometry of moduli spaces and representation theory, volume 24 of IAS/Park City Mathematical Series, pp 251–380. American and Mathematical Society, Providence, RI (2017)

  48. Okounkov, A.: Nonabelian stable envelopes, vertex functions with descendents, and integral solutions of \(q\)-difference equations. arXiv e-prints, page arXiv:2010.13217 (2020)

  49. Okounkov, A.: Inductive construction of stable envelopes. Lett. Math. Phys. 111(6), 56 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  50. Okounkov, A., Pandharipande, R.: The quantum differential equation of the Hilbert scheme of points in the plane. Transform. Groups 15(4), 965–982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Pandharipande, R., Pixton, A.: Gromov–witten/pairs correspondence for the quintic three-fold. J. Am. Math. Soc. 30, 389–449 (2012)

    Article  MATH  Google Scholar 

  52. Pushkar, P.P., Smirnov, A.V., Zeitlin, A.M.: Baxter \(Q\)-operator from quantum \(K\)-theory. Adv. Math. 360, 106919 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. Reshetikhin, N.Y.: Quasitriangular Hopf algebras and invariants of links. Algebra i Analiz 1(2), 169–188 (1989)

    MathSciNet  Google Scholar 

  54. Reshetikhin, N.Y., Takhtadzhyan, L.A., Faddeev, L.D.: Quantization of Lie groups and Lie algebras. Algebra i Analiz 1(1), 178–206 (1989)

    MathSciNet  MATH  Google Scholar 

  55. Rimanyi, R., Rozansky, L.: New quiver-like varieties and Lie superalgebras. arXiv e-prints, page arXiv:2105.11499 (2021)

  56. Rimányi, R., Smirnov, A., Varchenko, A., Zhou, Z.: Three-dimensional mirror self-symmetry of the cotangent bundle of the full flag variety. SIGMA Symm. Integrabil. Geom. Methods Appl. 15, 22 (2019)

    MathSciNet  MATH  Google Scholar 

  57. Rimányi, R., Weber, A.: Elliptic classes on Langlands dual flag varieties. Commun. Contemp. Math. 24(1), 15 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  58. Rimányi, R., Smirnov, A., Varchenko, A., Zhou, Z.: Three-dimensional mirror symmetry and elliptic stable envelopes. Int. Math. Res. Notices (2021). rnaa389

  59. Schiffmann, O., Vasserot, E.: The elliptic Hall algebra and the \(K\)-theory of the Hilbert scheme of \(\mathbb{A}^2\). Duke Math. J. 162(2), 279–366 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Shou, Y.: Bow Varieties—Geometry, Combinatorics, Characteristic Classes. ProQuest LLC, Ann Arbor, MI, (2021). Thesis (Ph.D.)–The University of North Carolina at Chapel Hill

  61. Smirnov, A.: On the Instanton R-matrix. Comm. Math. Phys. 345, 703–740 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  62. Smirnov, A.: Elliptic stable envelope for Hilbert scheme of points in the plane. Selecta Math. (N.S.) 26(1), 57 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  63. Smirnov, A.: Quantum differential and difference equations for \({{\rm Hilb}}^{n}({\mathbb{C}}^2)\). arXiv e-prints, page arXiv:2102.10726 (2021)

  64. Smirnov, A., Zhou, Z.: 3D mirror symmetry and quantum \(K\)-theory of hypertoric varieties. Adv. Math. 395, 61 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  65. Tarasov, V., Varchenko, A.: Difference equations compatible with trigonometric KZ differential equations. Internat. Math. Res. Notices 15, 801–829 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  66. Tarasov, V., Varchenko, A.: Duality for Knizhnik–Zamolodchikov and dynamical equations. Acta Appl. Math. 73(1–2):141–154 (2002). The 2000 Twente Conference on Lie Groups (Enschede)

  67. Tarasov, V., Varchenko, A.: Dynamical differential equations compatible with rational \(qKZ\) equations. Lett. Math. Phys. 71(2), 101–108 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  68. Toledano Laredo, V.: The trigonometric Casimir connection of a simple Lie algebra. J. Algebra 329, 286–327 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  69. Varagnolo, M.: Quiver varieties and Yangians. Lett. Math. Phys. 53(4), 273–283 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

During our work on this project, we greatly benefited from interaction with M. Aganagic, R. Bezrukavnikov, H. Dinkins, S. Gautam, D. Maulik, S. Shakirov, V. Toledano Laredo and A. Oblomkov. We are particularly grateful to Pavel Etingof for his inspiration and guidance.

A.O. thanks the Simons foundation for being financially supported as a Simons investigator.

The work of A.S. was partially supported by NSF grant DMS-2054527 and by the RSF grant 19-11-00062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Okounkov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okounkov, A., Smirnov, A. Quantum difference equation for Nakajima varieties. Invent. math. 229, 1203–1299 (2022). https://doi.org/10.1007/s00222-022-01125-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-022-01125-w

Navigation