Skip to main content
Log in

Local limits of uniform triangulations in high genus

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove a conjecture of Benjamini and Curien stating that the local limits of uniform random triangulations whose genus is proportional to the number of faces are the planar stochastic hyperbolic triangulations (PSHT) defined in Curien (Probab Theory Relat Fields 165(3):509–540, 2016). The proof relies on a combinatorial argument and the Goulden–Jackson recurrence relation to obtain tightness, and probabilistic arguments showing the uniqueness of the limit. As a consequence, we obtain asymptotics up to subexponential factors on the number of triangulations when both the size and the genus go to infinity. As a part of our proof, we also obtain the following result of independent interest: if a random triangulation of the plane T is weakly Markovian in the sense that the probability to observe a finite triangulation t around the root only depends on the perimeter and volume of t, then T is a mixture of PSHT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. As a deterministic example, the d-regular triangulations of the plane for \(d>6\) are hyperbolic.

  2. To be exact, the triangulations defined in  [20] are type-II triangulations, i.e. triangulations with no loop joining a vertex to itself. The type-I (with loops) analogue, which will be the one considered in this work, was defined in  [13].

  3. In particular, if t is a triangulation of a multi-polygon, then \(d_t^*(f,f')\) is the length of the smallest dual path which avoids the external faces.

  4. Unless the number of faces of t is smaller than r, in which case \(B_r^*(f)=t^*\), so any pair of \(F^2\) is good.

  5. This is a “weak” definition of one-endedness, since it does not prevent T to be the dual of a tree. However, once we will have proved that T has finite vertex degrees, this will be equivalent to the usual definition.

  6. In order to have nicer formulas, the convention we use here differs from the rest of the paper, in which the parameter n is related to the total number of vertices. This is why we do not use the \(\tau \) notation. We insist that this holds only in Sect. 3.

References

  1. Addario-Berry, L., Albenque, M.: The scaling limit of random simple triangulations and random simple quadrangulations. Ann. Probab. 45(5), 2767–2825 (2017). 09

    Article  MathSciNet  MATH  Google Scholar 

  2. Addario-Berry, L., Albenque, M.: Convergence of odd-angulations via symmetrization of labeled trees. arXiv:1904.04786, (2019)

  3. Aldous, D., Lyons, R.: Processes on unimodular random networks. Electron. J. Probab. 54(12), 1454–1508 (2007). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  4. Angel, O., Chapuy, G., Curien, N., Ray, G.: The local limit of unicellular maps in high genus. Electron. Commun. Probab. 18(86), 1–8 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Angel, O., Nachmias, A., Ray, G.: Random walks on stochastic hyperbolic half planar triangulations. Random Struct. Algorithms 49(2), 213–234 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Angel, O., Ray, G.: Classification of half planar maps. Ann. Probab. 43(3), 1315–1349 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Angel, O., Schramm, O.: Uniform infinite planar triangulations. Commun. Math. Phys. 241(2–3), 191–213 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bender, E.A., Canfield, E.: The asymptotic number of rooted maps on a surface. J. Comb. Theory Ser. A 43(2), 244–257 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Benjamini, I., Lyons, R., Peres, Y., Schramm, O.: Uniform spanning forests. Ann. Probab. 29(1), 1–65 (2001). 02

    Article  MathSciNet  MATH  Google Scholar 

  10. Bettinelli, J.: Geodesics in Brownian surfaces (Brownian maps). Ann. Inst. Henri Poincaré Probab. Stat. 52(2), 612–646 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Budd, T.: The peeling process of infinite Boltzmann planar maps. Electron. J. Comb. 23, 06 (2015)

    MathSciNet  Google Scholar 

  12. Budzinski, T.: Cartes aléatoires hyperboliques. PhD thesis, Université Paris-Sud (2018)

  13. Budzinski, T.: The hyperbolic Brownian plane. Probab. Theory Relat. Fields 171(1), 503–541 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Budzinski, T.: Infinite geodesics in hyperbolic random triangulations. Ann. Inst. H. Poincaré Probab. Stat. 56(2), 1129–1161 (2020). 05

    Article  MathSciNet  MATH  Google Scholar 

  15. Budzinski, T., Curien, N., Petri, B.: Universality for random surfaces in unconstrained genus. Electr. J. Comb. 26(4), P4.2 (2019). https://doi.org/10.37236/8623

  16. Carrell, S.R., Chapuy, G.: Simple recurrence formulas to count maps on orientable surfaces. J. Comb. Theory Ser. A 133, 58–75 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chapuy, G.: A new combinatorial identity for unicellular maps, via a direct bijective approach. Adv. Appl. Math. 47(4), 874–893 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chassaing, P., Durhuus, B.: Local limit of labeled trees and expected volume growth in a random quadrangulation. Ann. Probab. 34(3), 879–917 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chmutov, S., Pittel, B.: On a surface formed by randomly gluing together polygonal discs. Adv. Appl. Math. 73, 23–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Curien, N.: Planar stochastic hyperbolic triangulations. Probab. Theory Relat. Fields 165(3), 509–540 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Curien, N.: Peeling random planar maps. Saint-Flour lecture notes (2019)

  22. Curien, N., Le Gall, J.-F.: The Brownian plane. J. Theor. Prob. 27(4), 1249–1291 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. David, F., Kupiainen, A., Rhodes, R., Vargas, V.: Liouville quantum gravity on the Riemann sphere. Commun. Math. Phys. 342(3), 869–907 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. David, F., Rhodes, R., Vargas, V.: Liouville quantum gravity on complex tori. J. Math. Phys. 57(2), 022302 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eynard, B.: Counting Surfaces, Volume 70 of Progress in Mathematical Physics. Birkhäuser/Springer, Cham (2016). CRM Aisenstadt chair lectures

  26. Gamburd, A.: Poisson–Dirichlet distribution for random Belyi surfaces. Ann. Probab. 34(5), 1827–1848 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Goulden, I.P., Jackson, D.M.: The KP hierarchy, branched covers, and triangulations. Adv. Math. 219(3), 932–951 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hausdorff, F.: Summationsmethoden und Momentfolgen I. Math. Z. 9, 74–109 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147(1), 1–23 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Krikun, M.: Local structure of random quadrangulations. arXiv:math/0512304

  31. Krikun, M.: Explicit enumeration of triangulations with multiple boundaries. Electron. J. Comb. 14(1):Research Paper 61, 14 pp. (electronic) (2007)

  32. Le Gall, J.-F.: Uniqueness and universality of the Brownian map. Ann. Probab. 41, 2880–2960 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Marzouk, C.: Scaling limits of random bipartite planar maps with a prescribed degree sequence. Random Struct. Algorithms (2018)

  34. Miermont, G.: The Brownian map is the scaling limit of uniform random plane quadrangulations. Acta Math. 210(2), 319–401 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Miwa, T., Jimbo, M., Date, E.: Solitons. Cambridge Tracts in Mathematics, vol. 135. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  36. Mullin, R.: On the enumeration of tree-rooted maps. Can. J. Math. 19, 174–183 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  37. Okounkov, A.: Toda equations for Hurwitz numbers. Math. Res. Lett. 7(4), 447–453 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ray, G.: Geometry and percolation on half planar triangulations. Electron. J. Probab. 19(47), 1–28 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Ray, G.: Large unicellular maps in high genus. Ann. Inst. H. Poincaré Probab. Stat. 51(4), 1432–1456 (2015). 11

    Article  MathSciNet  MATH  Google Scholar 

  40. Stephenson, R.: Local convergence of large critical multi-type Galton–Watson trees and applications to random maps. J. Theor. Probab. 31(1), 159–205 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tutte, W.T.: A census of planar maps. J. Can. Math. 15, 249–271 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC ’96, New York, NY, USA, pp. 296–303. ACM (1996)

  43. Witten, E.: Two-dimensional gravity and intersection theory on moduli space. Surveys in differential geometry (Cambridge. MA, 1990), pp. 243–310. Lehigh Univ, Bethlehem, PA (1991)

Download references

Acknowledgements

The authors thank Guillaume Chapuy and Nicolas Curien for helpful discussions and comments on earlier versions of this manuscript. The authors also thank the two anonymous referees for useful remarks. The first author is supported by ERC Geobrown (740943). The second author is fully supported by ERC-2016-STG 716083 “CombiTop”. The authors would also like to thank the Isaac Newton Institute for Mathematical Sciences (EPSRC Grant No. EP/R014604/1) for its hospitality during the Random Geometry follow-up workshop when this work was started.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Budzinski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budzinski, T., Louf, B. Local limits of uniform triangulations in high genus. Invent. math. 223, 1–47 (2021). https://doi.org/10.1007/s00222-020-00986-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-020-00986-3

Navigation