# Min–max theory for constant mean curvature hypersurfaces

- 175 Downloads

## Abstract

In this paper, we develop a min–max theory for the construction of constant mean curvature (CMC) hypersurfaces of prescribed mean curvature in an arbitrary closed manifold. As a corollary, we prove the existence of a nontrivial, smooth, closed, almost embedded, CMC hypersurface of any given mean curvature *c*. Moreover, if *c* is nonzero then our min–max solution always has multiplicity one.

## Notes

### Acknowledgements

Both authors are grateful to Prof. Shing-Tung Yau for suggesting this problem and for his generous support. X. Zhou would also like to thank Prof. Richard Schoen and Prof. Neshan Wickramasekera for valuable comments. J. Zhu would also like to thank Prof. William Minicozzi for his invaluable guidance and encouragement. X. Zhou is partially supported by NSF grant DMS-1704393 and DMS-1811293. J. Zhu is partially supported by NSF grant DMS-1607871. Finally, both authors would like to thank the anonymous referees for their comments.

## References

- 1.Agol, I., Marques, F.C., Neves, A.: Min–max theory and the energy of links. J. Am. Math. Soc.
**29**(2), 561–578 (2016)MathSciNetzbMATHGoogle Scholar - 2.Almgren Jr., F.J.: The Theory of Varifolds, Mimeographed Notes. Princeton University, Princeton (1965)Google Scholar
- 3.Almgren Jr., F.J.: Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Am. Math. Soc.
**4**(165), viii+199 (1976)MathSciNetzbMATHGoogle Scholar - 4.Arnold, V.I.: Arnold’s problems. Springer-Verlag, Berlin; PHASIS, Moscow. Translated and revised edition of the 2000 Russian original. Philippov, A. Yakivchik and M. Peters, With a preface by V (2004)Google Scholar
- 5.Almgren, J., Justin, F.: The homotopy groups of the integral cycle groups. Topology
**1**, 257–299 (1962)MathSciNetzbMATHGoogle Scholar - 6.Barbosa, J.L., do Carmoand, M., Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z.
**197**(1), 123–138 (1988)MathSciNetzbMATHGoogle Scholar - 7.Bellettini, C., Wickramasekera, N.: Stable CMC integral varifolds of codimension 1: regularity and compactness.
*arXiv preprint*arXiv:1802.00377 (2018) - 8.Bérard, P., Meyer, D.: Inégalités isopérimétriques et applications. Ann. Sci. École Norm. Sup. (4)
**15**(3), 513–541 (1982)MathSciNetzbMATHGoogle Scholar - 9.Chambers, G.R., Liokumovich, Y.: Existence of minimal hypersurfaces in complete manifolds of finite volume. arXiv:1609.04058 (2016)
- 10.Chruściel, P.T., Galloway, G.J., Pollack, D.: Mathematical general relativity: a sampler. Bull. Am. Math. Soc. (N.S.)
**47**(4), 567–638 (2010)MathSciNetzbMATHGoogle Scholar - 11.Colding, T.H., De Lellis, C.: The min–max construction of minimal surfaces. Surv Differ Geom 8:75–107 Google Scholar
- 12.Colding, T.H., Minicozzi, W.P.: II. A Course in Minimal Surfaces Volume 121 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2011)Google Scholar
- 13.De Lellis, C., Ramic, J.: Min–max theory for minimal hypersurfaces with boundary. Ann. Inst. Fourier (Grenoble)
**68**(5), 1909–1986 (2018)MathSciNetzbMATHGoogle Scholar - 14.De Lellis, C., Tasnady, D.: The existence of embedded minimal hypersurfaces. J. Differ. Geom.
**95**(3), 355–388 (2013)MathSciNetzbMATHGoogle Scholar - 15.Duzaar, F., Steffen, K.: Existence of hypersurfaces with prescribed mean curvature in Riemannian manifolds. Indiana Univ. Math. J.
**45**(4), 1045–1093 (1996)MathSciNetzbMATHGoogle Scholar - 16.Ginzburg, V.L.: On closed trajectories of a charge in a magnetic field. An application of symplectic geometry. In: Contact and symplectic geometry (Cambridge 1994). Publications of the Newton Institute, vol. 8, pp. 131–148. Cambridge University Press, Cambridge, UK (1996)Google Scholar
- 17.Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhäuser Verlag, Basel (1984)zbMATHGoogle Scholar
- 18.Guaraco, M.A.M.: Min–max for phase transitions and the existence of embedded minimal hypersurfaces. J. Differ. Geom.
**108**(1), 91–133 (2018)MathSciNetzbMATHGoogle Scholar - 19.Harvey, R., Lawson, B.: Extending minimal varieties. Invent. Math.
**28**, 209–226 (1975)MathSciNetzbMATHGoogle Scholar - 20.Heinz, E.: über die Existenz einer Fläche konstanter mittlerer Krümmung bei vorgegebener Berandung. Math. Ann.
**127**, 258–287 (1954)MathSciNetzbMATHGoogle Scholar - 21.Hildebrandt, S.: On the Plateau problem for surfaces of constant mean curvature. Commun. Pure Appl. Math.
**23**, 97–114 (1970)MathSciNetzbMATHGoogle Scholar - 22.Hoffman, D., Meeks, W.H.: III. The strong halfspace theorem for minimal surfaces. Invent. Math.
**101**(2), 373–377 (1990)MathSciNetzbMATHGoogle Scholar - 23.Huisken, G., Yau, S.-T.: Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature. Invent. Math.
**124**(1–3), 281–311 (1996)MathSciNetzbMATHGoogle Scholar - 24.Kapouleas, N.: Complete constant mean curvature surfaces in Euclidean three-space. Ann. Math. (2)
**131**(2), 239–330 (1990)MathSciNetzbMATHGoogle Scholar - 25.Ketover, D.: Equivariant min–max theory. arXiv:1612.08692 (2016)
- 26.Ketover, D., Zhou, X.: Entropy of closed surfaces and min–max theory. J. Differ. Geom.
**110**(1), 31–71 (2018)MathSciNetzbMATHGoogle Scholar - 27.Krantz, S.G., Parks, H.R.: A Primer of Real Analytic Functions, Volume 4 of Basler Lehrbücher [Basel Textbooks]. Birkhäuser Verlag, Basel (1992)Google Scholar
- 28.Li, M., Zhou, X.: Min–max theory for free boundary minimal hypersurfaces I-regularity theory. J. Differ. Geom. arXiv:1611.02612 (2016)
- 29.Liokumovich, Y., Marques, F.C., Neves, A.: Weyl law for the volume spectrum. Ann. Math. (2)
**187**(3), 933–961 (2018)MathSciNetzbMATHGoogle Scholar - 30.Lobaton, E.J., Salamon, T.R.: Computation of constant mean curvature surfaces: application to the gas-liquid interface of a pressurized fluid on a superhydrophobic surface. J. Colloid Interface Sci.
**314**, 184–198 (2007)Google Scholar - 31.López, R.: Wetting phenomena and constant mean curvature surfaces with boundary. Rev. Math. Phys.
**17**(7), 769–792 (2005)MathSciNetzbMATHGoogle Scholar - 32.Mahmoudi, F., Mazzeo, R., Pacard, F.: Constant mean curvature hypersurfaces condensing on a submanifold. Geom. Funct. Anal.
**16**(4), 924–958 (2006)MathSciNetzbMATHGoogle Scholar - 33.Marques, F.C., Neves, A.: Min-max theory and the Willmore conjecture. Ann. Math. (2)
**179**(2), 683–782 (2014)MathSciNetzbMATHGoogle Scholar - 34.Marques, F.C., Neves, A.: Morse index and multiplicity of min–max minimal hypersurfaces. Camb. J. Math.
**4**(4), 463–511 (2016)MathSciNetzbMATHGoogle Scholar - 35.Marques, F.C., Neves, A.: Existence of infinitely many minimal hypersurfaces in positive ricci curvature. Invent. Math. (2017). https://doi.org/10.1007/s00222-017-0716-6 MathSciNetzbMATHGoogle Scholar
- 36.Meeks III, W., Simon, L., Yau, S.T.: Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature. Ann. Math. (2)
**116**(3), 621–659 (1982)MathSciNetzbMATHGoogle Scholar - 37.Meeks III, W.H., Mira, P., Perez, J., Ros, A.: Constant mean curvature spheres in homogeneous three-spheres.
*arXiv preprint*arXiv:1308.2612 (2013) - 38.Meeks III, W.H., Mira, P., Perez, J., Ros, A.: Constant mean curvature spheres in homogeneous three-manifolds.
*arXiv preprint*arXiv:1706.09394 (2017) - 39.Montezuma, R.: Min–max minimal hypersurfaces in non-compact manifolds. J. Differ. Geom.
**103**(3), 475–519 (2016)MathSciNetzbMATHGoogle Scholar - 40.Morgan, F.: Regularity of isoperimetric hypersurfaces in Riemannian manifolds. Trans. Am. Math. Soc.
**355**(12), 5041–5052 (2003)MathSciNetzbMATHGoogle Scholar - 41.Nardulli, S.: The isoperimetric profile of a smooth Riemannian manifold for small volumes. Ann. Glob. Anal. Geom.
**36**(2), 111–132 (2009)MathSciNetzbMATHGoogle Scholar - 42.Novikov, S.P.: The Hamiltonian formalism and a multivalued analogue of Morse theory. Uspekhi Mat. Nauk
**37**(5(227)), 3–49 (1982)MathSciNetGoogle Scholar - 43.Pacard, F.: Constant mean curvature hypersurfaces in Riemannian manifolds. Riv. Mat. Univ. Parma (7)
**4**, 141–162 (2005)MathSciNetzbMATHGoogle Scholar - 44.Pitts, J.T.: Existence and Regularity of Minimal Surfaces on Riemannian Manifolds. Volume 27 of Mathematical Notes. Princeton University Press, Princeton (1981)Google Scholar
- 45.Qing, J., Tian, G.: On the uniqueness of the foliation of spheres of constant mean curvature in asymptotically flat 3-manifolds. J. Am. Math. Soc.
**20**(4), 1091–1110 (2007)MathSciNetzbMATHGoogle Scholar - 46.Ros, A.: The isoperimetric problem. Global Theory of Minimal Surfaces. In: Clay Mathematics Proceedings, vol. 2, pp. 175–209. American Mathematical Society, Providence, RI (2005)Google Scholar
- 47.Rosenberg, H., Schneider, M.: Embedded constant-curvature curves on convex surfaces. Pacific J. Math.
**253**(1), 213–218 (2011)MathSciNetzbMATHGoogle Scholar - 48.Rosenberg, H., Smith, G.: Degree theory of immersed hypersurfaces. arXiv:1010.1879v3 (2016)
- 49.Schneider, M.: Closed magnetic geodesics on \(S^2\). J. Differ. Geom.
**87**(2), 343–388 (2011)zbMATHGoogle Scholar - 50.Schoen, R., Simon, L.: Regularity of stable minimal hypersurfaces. Commun. Pure Appl. Math.
**34**(6), 741–797 (1981)MathSciNetzbMATHGoogle Scholar - 51.Schoen, R., Simon, L., Yau, S.-T.: Curvature estimates for minimal hypersurfaces. Acta Math.
**134**(3–4), 275–288 (1975)MathSciNetzbMATHGoogle Scholar - 52.Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, vol. 3. Centre for Mathematical Analysis, Australian National University, Canberra (1983)Google Scholar
- 53.Smith, F.R: On the existence of embedded minimal 2-spheres in the 3-sphere, endowed with an arbitrary Riemannian metric. Ph.D. thesis, Ph.D. thesis, Supervisor: Leon Simon, University of Melbourne (1982)Google Scholar
- 54.Song, A.: Local min–max surfaces and strongly irreducible minimal Heegaard splittings. arXiv:1706.01037 (2017)
- 55.Struwe, M.: Large \(H\)-surfaces via the mountain-pass-lemma. Math. Ann.
**270**(3), 441–459 (1985)MathSciNetzbMATHGoogle Scholar - 56.Struwe, M.: The existence of surfaces of constant mean curvature with free boundaries. Acta Math.
**160**(1–2), 19–64 (1988)MathSciNetzbMATHGoogle Scholar - 57.Tamanini, I.: Boundaries of Caccioppoli sets with Hölder-continuous normal vector. J. Reine Angew. Math.
**334**, 27–39 (1982)MathSciNetzbMATHGoogle Scholar - 58.Wente, H.C.: Counterexample to a conjecture of H. Hopf. Pacific J. Math.
**121**(1), 193–243 (1986)MathSciNetzbMATHGoogle Scholar - 59.White, B.: The maximum principle for minimal varieties of arbitrary codimension. Commun. Anal. Geom.
**18**(3), 421–432 (2010)MathSciNetzbMATHGoogle Scholar - 60.Wickramasekera, N.: A general regularity theory for stable codimension 1 integral varifolds. Ann. Math. (2)
**179**(3), 843–1007 (2014)MathSciNetzbMATHGoogle Scholar - 61.Ye, R.: Foliation by constant mean curvature spheres. Pacific J. Math.
**147**(2), 381–396 (1991)MathSciNetzbMATHGoogle Scholar - 62.Zhou, X.: Min-max hypersurface in manifold of positive Ricci curvature. J. Differ. Geom.
**105**(2), 291–343 (2017)MathSciNetzbMATHGoogle Scholar