Skip to main content
Log in

Automorphisms of projective K3 surfaces with minimum entropy

  • Published:
Inventiones mathematicae Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. The lattice \(\mathrm{Pic}(X)\) can be degenerate when \(X\) is not projective, e.g. one can have \(\mathrm{Pic}(X) = {\mathbb {Z}}E\) with \(E^2=0\).

  2. If we had chosen \(v|23\) of degree \(4\), then \(f_1\) would have period \(n=25440\) on \(G(L_1) \cong {\mathbb {F}}_{23}^8\), which would give \(D(n) = 74 > 12\). Any candidate for \(f|L_1^\perp \) would then be too large to fit inside the cohomology of a K3 surface.

References

  1. Barth, W., Peters, C., van de Ven, A.: Compact Complex Surfaces. Springer, Berlin (1984)

  2. Beauville, A., et al.: Géométrie des surfaces K3: modules et périodes. Astérisque 126 (1985)

  3. Bedford, E., Kim, K.: Periodicities in linear fractional recurrences: degree growth of birational surface maps. Michigan Math. J. 54, 647–670 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bedford, E., Kim, K.: Dynamics of (pseudo) automorphisms of 3-space: periodicity versus positive entropy. Publ. Mat. IHES 58 (2014), 65–119

  5. Borel, A., Harish-Chandra.: Arithmetic subgroups of algebraic groups. Ann. Math. 75, 485–535 (1962)

  6. Bourbaki, N.: Groupes et algèbres de Lie, Ch. IV–VI. Hermann, Paris (1968); Masson, Paris (1981)

  7. Cantat, S.: Dynamique des automorphismes des surfaces projectives complexes. CRAS Paris Sér. I Math. 328, 901–906 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Conway, J.H., Sloane, N.J.A.: Sphere Packings. Lattices and Groups. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  9. Dolgachev, I.: Reflection groups in algebraic geometry. Bull. Am. Math. Soc. 45, 1–60 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dolgachev, I., Ortland, D.: Point sets in projective spaces and theta functions. Astérisque 165 (1988)

  11. Dolgachev, I.V.: Mirror symmetry for lattice polarized \(K3\) surfaces. J. Math. Sci. 81, 2599–2630 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gromov, M.: On the entropy of holomorphic maps. Enseign. Math. 49, 217–235 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Gross, B., McMullen, C.: Automorphisms of even unimodular lattices and unramified Salem numbers. J. Algebra 257, 265–290 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hironaka, E.: The Lehmer polynomial and pretzel links. Can. Math. Bull. 44, 440–451 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990)

  16. Kondo, S.: Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of K3 surfaces. Duke Math. J. 92, 593–603 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kondo, S., Shimada, I.: The automorphism group of a supersingular K3 surface with Artin invariant 1 in characteristic 3. Int. Math. Res. Not., no. 7, pp. 1885–1924 (2014)

  18. Kumar, A.: K3 surfaces associated with curves of genus two. Int. Math. Res. Not., Art. ID rnm165 (2008)

  19. Lanneau, E., Thiffeault, J.-L.: On the minimum dilatation of pseudo-Anosov homeomorphisms on surfaces of small genus. Ann. Inst. Fourier 61, 105–144 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lehmer, D.H.: Factorization of certain cyclotomic functions. Ann. Math. 34, 461–479 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  21. McMullen, C.: Coxeter groups, Salem numbers and the Hilbert metric. Publ. Math. IHES 95, 151–183 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. McMullen, C.: Dynamics on K3 surfaces: Salem numbers and Siegel disks. J. Reine Angew. Math. 545, 201–233 (2002)

    MathSciNet  MATH  Google Scholar 

  23. McMullen, C.: Dynamics on blowups of the projective plane. Publ. Math. IHES 105, 49–89 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. McMullen, C.: K3 surfaces, entropy and glue. J. Reine Angew. Math. 658, 1–25 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. McMullen, C.: Salem number/Coxeter group/K3 surface package. doi:10.7910/DVN/29211

  26. Milnor, J., Husemoller, D.: Symmetric Bilinear Forms. Springer, Berlin (1973)

  27. Morrison, D.R.: On K3 surfaces with large Picard number. Invent. Math. 75 (1984)

  28. Mukai, S.: Finite groups of automorphisms of K3 surfaces and the Mathieu group. Invent. Math. 94, 183–221 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nagata, M.: On rational surfaces. II. Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 33, 271–293 (1961)

  30. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)

  31. Nikulin, V.V.: Finite automorphism groups of Kähler K3 surfaces. Trans. Moscow Math. Soc. 38, 71–135 (1980)

    Google Scholar 

  32. Nikulin, V.V.: Integral symmetric bilinear forms and its applications. Math. USSR Izv. 14, 103–167 (1980)

    Article  MATH  Google Scholar 

  33. Oguiso, K.: Salem polynomials and the bimeromorphic automorphism groups of a hyperkähler manifold. In: Selected papers on analysis and differential equations, AMS Translations, vol. 230. Amer. Math. Soc., Providence, pp. 201–227 (2010)

  34. Oguiso, K.: The third smallest Salem number in automorphisms of K3 surfaces. In: Algebraic Geometry in East Asia-Seoul 2008, Adv. Stud. Pure Math., vol. 60. Math. Soc. Japan, pp. 331–360 (2010)

  35. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, New Jersey (1982)

  36. Serre, J.P.: A Course in Arithmetic. Springer, Berlin (1973)

  37. Silverman, J.: Rational points on K3 surfaces: a new canonical height. Invent. math. 105, 347–373 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. Uehara, T.: Rational surface automorphisms with positive entropy (2012, preprint)

  39. Wang, L.: Rational points and canonical heights on K3-surfaces in \({{\mathbb{P}}}^1 \times {{\mathbb{P}}}^1 \times {{\mathbb{P}}}^1\). In: Recent Developments in the Inverse Galois Problem. Amer. Math. Soc., Providence, pp. 273–289 (1995)

Download references

Acknowledgments

I would like to thank E. Bedford and B. Gross for useful conversations related to this work.

Author information

Authors and Affiliations

Authors

Additional information

Research supported by the NSF, MPI and the Humboldt Foundation.

Appendix: Small Salem numbers

Appendix: Small Salem numbers

See Table 1

Table 1 Small Salem numbers

This table gives the value of the smallest Salem number \(\lambda _d\) of degree \(d\), its minimal polynomial \(S(x)\), and the determinant \(\Delta = |S(1)S(-1)|\) of its principal lattice, for all even \(d \le 20\). The entries are listed in increasing order as real numbers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McMullen, C.T. Automorphisms of projective K3 surfaces with minimum entropy. Invent. math. 203, 179–215 (2016). https://doi.org/10.1007/s00222-015-0590-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-015-0590-z

Navigation