Inventiones mathematicae

, Volume 201, Issue 2, pp 711–772 | Cite as

BCFG Drinfeld–Sokolov hierarchies and FJRW-theory

Article

References

  1. 1.
    Balog, J., Fehér, L., O’Raifeartaigh, L., Forgács, P., Wipf, A.: Toda theory and \(W\)-algebra from a gauged WZNW point of view. Ann. Phys. 203(1990), 76–136 (1990)CrossRefGoogle Scholar
  2. 2.
    Buryak, A., Posthuma, H., Shadrin, S.: On deformations of quasi-Miura transformations and the Dubrovin-Zhang bracket. J. Geom. Phys. 62, 1639–1651 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Buryak, A., Posthuma, H., Shadrin, S.: A polynomial bracket for the Dubrovin-Zhang hierarchies. J. Diff. Geom. 92, 153–185 (2012)MathSciNetGoogle Scholar
  4. 4.
    Chiodo, A., Iritani, H., Ruan, Y.: Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence. Publ. Math. Inst. Hautes tudes Sci. 119, 127–216 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Drinfeld, V., Sokolov, V.: Lie algebras and equations of Korteweg-de Vries type. J. Soviet Math. 30, 1975–2036 (1985). Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki (Noveishie Dostizheniya) 24, 81–180 (1984)Google Scholar
  6. 6.
    Dubrovin, B.: Integrable systems and classification of 2-dimensional topological field theories. In: Integrable Systems (Luminy, 1991), pp. 313–359. Progress in Mathematics, vol. 115, Birkhäuser, Boston (1993)Google Scholar
  7. 7.
    Dubrovin, B.: Geometry of 2D topological field theories. In: Integrable systems and Quantum Groups (Montecatini Terme, 1993), pp. 120–348. Lecture Notes in Mathematics, vol. 1620, Springer, Berlin (1996)Google Scholar
  8. 8.
    Dubrovin, B., Liu, S.-Q., Zhang, Y.: On Hamiltonian perturbations of hyperbolic systems of conservation laws I: quasi-triviality of bi-Hamiltonian perturbations. Comm. Pure Appl. Math. 59, 559–615 (2006)Google Scholar
  9. 9.
    Dubrovin, B., Liu, S.-Q., Zhang, Y.: Frobenius manifolds and central invariants for the Drinfeld-Sokolov bihamiltonian structures. Adv. Math. 219, 780–837 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dubrovin, B., Zhang, Y.: Bihamiltonian hierarchies in 2D topological field theory at one-loop approximation. Comm. Math. Phys. 198, 311–361 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dubrovin, B., Zhang, Y.: Frobenius manifolds and Virasoro constraints. Selecta Math. (N.S.) 5, 423–466 (1999)Google Scholar
  12. 12.
    Dubrovin, B., Zhang, Y.: Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants. eprint arXiv:math/0108160
  13. 13.
    Dubrovin, B., Zhang, Y.: Virasoro Symmetries of the Extended Toda Hierarchy. Comm. Math. Phys. 250, 161–193 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Faber, C., Shadrin, S., Zvonkine, D.: Tautological relations and the r-spin Witten conjecture. Ann. Sci. Éc. Norm. Supér. 43, 621–658 (2010)Google Scholar
  15. 15.
    Fan, H., Jarvis, T., Ruan, Y.: The Witten equation and its virtual fundamental cycle. eprint arXiv:math/0712.4025
  16. 16.
    Fan, H., Jarvis, T., Ruan, Y.: The Witten equation, mirror symmetry and quantum singularity theory. Ann. Math. 178, 1–106 (2013)Google Scholar
  17. 17.
    Fan, H., Francis, A., Jarvis, T., Merrell, E., Ruan, Y.: Witten’s \(D_4\) Integrable hierarchies conjecture. eprint arXiv:1008.0927
  18. 18.
    Frenkel, E., Givental, A., Milanov, T.: Soliton equations, vertex operators, and simple singularities. Funct. Anal. Other Math. 3, 47–63 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Getzler, E.: The Toda conjecture. In: Symplectic Geometry and Mirror Symmetry (Seoul, 2000), pp. 51–79. World Scientific Publishing, River Edge (2001)Google Scholar
  20. 20.
    Givental, A.: Semisimple Frobenius structures at higher genus. Internat. Math. Res. Notices 2001(23), 1265–1286 (2001)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Givental, A.: Gromov-Witten invariants and quantization of quadratic Hamiltonians. Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary. Mosc. Math. J. 1, 551–568, 645 (2001)Google Scholar
  22. 22.
    Givental, A., Milanov, T.: Simple singularities and integrable hierarchies. In: The Breadth of Symplectic and Poisson Geometry. Progress in Mathematics, vol. 232, pp. 173–201. Birkhauser Boston, Boston (2005)Google Scholar
  23. 23.
    Hollowood, T., Miramontes, J.: Tau-functions and generalized integrable hierarchies. Comm. Math. Phys. 157, 99–117 (1993)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Johnson, P.: Equivariant Gromov-Witten theory of one dimensional stacks. eprint arXiv:0903.1068
  25. 25.
    Kac, V.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  26. 26.
    Kac, V., Wakimoto, M.: Exceptional hierarchies of soliton equations. In: Theta Functions-Bowdoin 1987, Part 1 (Brunswick, ME, 1987). Proceedings of Symposia in Pure Mathematics, vol. 49, pp. 191–237. American Mathematical Society, Providence (1989)Google Scholar
  27. 27.
    Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Comm. Math. Phys. 147, 1–23 (1992)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Kontsevich, M., Manin, Y.: Gromov-Witten classes, quantum cohomology, and enumerative geometry. Comm. Math. Phys. 164, 525–562 (1994)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Krawitz, M.: FJRW rings and Landau-Ginzburg mirror symmetry, eprint arXiv:0906.0796
  30. 30.
    Liu, S.-Q., Wu, C.-Z., Zhang, Y.: On the Drinfeld-Sokolov hierarchies of D type. Int. Math. Res. Notices 2011, 1952–1996 (2011)MathSciNetGoogle Scholar
  31. 31.
    Liu, S.-Q., Yang, D., Zhang, Y.: Uniqueness theorem of \({\cal{W}}\)-constraints for simple singularities. Lett. Math. Phys. 103, 1329–1345 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Liu, S.-Q., Zhang, Y.: Deformations of semisimple bihamiltonian structures of hydrodynamic type. J. Geom. Phys. 54, 427–453 (2005)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Liu, S.-Q., Zhang, Y.: Jacobi structures of evolutionary partial differential equations. Adv. Math. 227, 73–130 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Milanov, T., Tseng, H.-H.: Equivariant orbifold structures on the projective line and integrable hierarchies. Adv. Math. 226, 641–672 (2011)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Milanov, T.: Analyticity of the total ancestor potential in singularity theory. Adv. Math. 255, 217–241 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Okounkov, A., Pandharipande, R.: The equivariant Gromov-Witten theory of \(P^1\). Ann. Math. 163, 561–605 (2006)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Rossi, P.: Gromov-Witten theory of orbicurves, the space of tri-polynomials and symplectic field theory of Seifert fibrations. Math. Ann. 348, 265–287 (2010)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Saito, K.: On a linear structure of the quotient variety by a finite reflexion group. Publ. Res. Inst. Math. Sci. 29, 535–579 (1993)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Saito, K.: Primitive forms for a universal unfolding of a function with an isolated critical point. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(3) (1981), 775–792 (1982)Google Scholar
  40. 40.
    Teleman, C.: The structure of 2D semi-simple field theories. Invent. Math. 188, 525–588 (2012)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Witten, E.: Two-dimensional gravity and intersection theory on the moduli space. In: Surveys in Differential Geometry (Cambridge, MA, 1990), pp. 243–310. Lehigh University, Bethlehem (1991)Google Scholar
  42. 42.
    Witten, E.: Algebraic geometry associated with matrix models of two-dimensional gravity. In: Topological Models in Modern Mathematics (Stony Brook, NY, 1991) pp. 235–269. Publish or Perish, Houston (1993)Google Scholar
  43. 43.
    Witten, E.: Private communicationGoogle Scholar
  44. 44.
    Wu, C.-Z.: A remark on Kac-Wakimoto hierarchies of D-type. J. Phys. A 43, 035201, 8 pp (2010)Google Scholar
  45. 45.
    Wu, C.-Z.: Tau functions and Virasoro symmetries for Drinfeld-Sokolov hierarchie. eprint arXiv:1203.5750
  46. 46.
    Zhang, Y.: On the \(CP^1\) topological sigma model and the Toda lattice hierarchy. J. Geom. Phys. 40, 215–232 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mathematical SciencesTsinghua UniversityBeijingPeople’s Republic of China
  2. 2.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations