Skip to main content
Log in

Global effective versions of the Briançon–Skoda–Huneke theorem

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We prove global effective versions of the Briançon–Skoda–Huneke theorem. Our results extend, to singular varieties, a result of Hickel on the membership problem in polynomial ideals in \({\mathbb C}^n\), and a related theorem of Ein and Lazarsfeld for smooth projective varieties. The proofs rely on known geometric estimates and new results on multivariable residue calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In Kollár’s theorem \(c_m=1\) even for \(m>n\) (unless \(d=2\), see also [30]) and this estimate is optimal.

  2. In Kollár’s and Jelonek’s theorems, as well as in [21], there are more precise results that take into account different degree bounds \(d_j\) of \(F_j\), but for simplicity, in this paper we always keep all \(d_j=d\).

  3. Often in the literature \(\mu +\mu _0\) is replaced by a constant independent of the number of generators \(m\).

  4. The definition is the same when \(X\) is singular.

  5. The sets \(Z_k^\text {\tiny {bef}}\) are the zero varieties of certain Fitting ideals associated with a free resolution of \({\mathcal O}^X/{\mathcal J}\); the importance of these sets (ideals) was pointed out by Buchsbaum and Eisenbud in the 70’s. We have not seen any notion for these sets in the literature, and “Buchsbaum–Eisenbud varieties” is already occupied for another purpose, so we stick to BEF as an acronym for Buchsbaum–Eisenbud–Fitting.

  6. The fact that (2.15) may be infinite causes no problem, since, for degree reasons, \(U\) and \(R\) only contain a finite number of terms.

References

  1. Andersson, M.: Residue currents and ideals of holomorphic functions. Bull. Sci. Math. 128, 481–512 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andersson, M.: The membership problem for polynomial ideals in terms of residue currents. Ann. Inst. Fourier 56, 101–119 (2006)

    Article  MATH  Google Scholar 

  3. Andersson, M.: Explicit versions of the Briançon–Skoda theorem with variations. Michigan Math. J. 54(2), 361–373 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Andersson, M.: A residue criterion for strong holomorphicity. Arkiv. Mat. 48, 1–15 (2010)

  5. Andersson, M., Götmark, E.: Explicit representation of membership of polynomial ideals. Math. Ann. 349, 345–365 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Andersson, M., Samuelsson, H.: A Dolbeault–Grothendieck lemma on a complex space via Koppelman formulas. Invent. Math. 190, 261–297 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Andersson, M., Samuelsson, H., Sznajdman, J.: On the Briançon–Skoda theorem on a singular variety. Ann. Inst. Fourier 60, 417–432 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Andersson, M., Wulcan, E.: Residue currents with prescribed annihilator ideals. Ann. Sci. École Norm. Sup. 40, 985–1007 (2007)

  9. Andersson, M., Wulcan, E.: Decomposition of residue currents. J. Reine Angew. Math. 638, 103–118 (2010)

    MATH  MathSciNet  Google Scholar 

  10. Andersson, M., Wulcan, E.: On the effective membership problem on singular varieties. arXiv:1107.0388v2.

  11. Björk, J.-B.: Residues and \({\cal D}\)-modules. The legacy of Niels Henrik Abel, 605651, Springer, Berlin (2004)

  12. Björk, J.-E., Samuelsson, H.: Regularizations of residue currents. J. Reine Angew. Math. 649, 33–54 (2010)

    MATH  MathSciNet  Google Scholar 

  13. Briançon, J., Skoda, H.: Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de \({\mathbb{C}}^{n}\). C. R. Acad. Sci. Paris Sér. A 278, 949–951 (1974)

  14. Brownawell, W.D.: Bounds for the degrees in the Nullstellensatz. Ann. Math. 126(3), 577–591 (1987)

  15. Demailly, J.-P.: Complex Analytic and Differential Geometry. Monograph Grenoble (1997)

  16. Ein, L., Lazarsfeld, R.: A geometric effective Nullstellensatz. Invent. Math. 135, 427–448 (1999)

    Article  MathSciNet  Google Scholar 

  17. Eisenbud, D.: Commutative algebra. With a view toward algebraic geometry. Graduate Texts in Mathematics, 160. Springer, New York (1995).

  18. Eisenbud, D.: The geometry of syzygies. A second course in commutative algebra and algebraic geometry. Graduate Texts in Mathematics, 229. Springer, New York (2005).

  19. Henkin, G., Passare, M.: Abelian differentials on singular varieties and variations on a theorem of Lie–Griffiths. Invent. Math. 135, 297–328 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hermann, G.: Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math. Ann. 95, 736–788 (1926)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hickel, M.: Solution d’une conjecture de C. Berenstein-A. Yger et invariants de contact à l’infini. Ann. Inst. Fourier 51, 707–744 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Huneke, C.: Uniform bounds in Noetherian rings. Invent. Math. 107, 203–223 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jelonek, Z.: On the effective Nullstellensatz. Invent. Math. 162, 1–17 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kollár, J.: Sharp effective Nullstellensatz. J. Am. Math. Soc. 1, 963–975 (1988).

  25. Lärkäng, R.: On the duality theorem on an analytic variety. Math. Ann. 355, 215–234 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lazarsfeld, R.: Positivity in algebraic geometry I and II. Springer, Berlin (2004).

  27. Macaulay, F.S.: The Algebraic Theory of Modular Systems. Cambridge Univ. Press, Cambridge (1916).

  28. Mayr, E., Mayer, A.: The complexity of the word problem for commutative semigroups and polynomial ideals. Adv. Math. 46, 305–329 (1982).

  29. Passare, M., Tsikh, A., Yger, A.: Residue currents of the Bochner–Martinelli type. Publicacions Mat. 44, 85–117 (2000)

  30. Sombra, M.: A sparse effective Nullstellensatz. Adv. Appl. Math. 22, 271–295 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sznajdman, J.: The Briançon-Skoda number of analytic irreducible planar curves. Ann. Inst. Fourier, to appear. Available at arXiv:1201.3288.

  32. Wulcan, E.: Sparse effective membership problems via residue currents. Math. Ann. 350, 661–682 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wulcan, E.: Some variants of Macaulay’s and Max Noether’s theorems. J. Commut. Algebra 2(4), 567–580 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank the referee for careful reading and many valuable comments and suggestions that have substantially improved the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Wulcan.

Additional information

The first author was partially supported by the Swedish Research Council. The second author was partially supported by the Swedish Research Council and by the NSF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersson, M., Wulcan, E. Global effective versions of the Briançon–Skoda–Huneke theorem. Invent. math. 200, 607–651 (2015). https://doi.org/10.1007/s00222-014-0544-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-014-0544-x

Navigation