Skip to main content

Advertisement

Log in

Kotani–Last problem and Hardy spaces on surfaces of Widom type

  • Published:
Inventiones mathematicae Aims and scope

Abstract

This is a small theory of non almost periodic ergodic families of Jacobi matrices with purely (however) absolutely continuous spectrum. The reason why this effect may happen is that under our “axioms” we found an analytic condition on the resolvent set that is responsible for (exactly equivalent to) this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. To be precise there is an exception: some \(J\)’s may have eigenvalues only at the end points \(a_0\), \(b_0\), but the map \(J(E)\rightarrow D(E)\) is still injective. Because, even if so, the measure, which corresponds to the Herglotz class function \(-1/\langle (J-z)^{-1}e_0,e_0\rangle \), is a.c. for all \(J\in J(E)\) and both \(J_\pm \) have purely a.c. spectrum on \(E\).

References

  1. Avila, A.: On the Kotani–Last and Schrödinger conjectures, arXiv:1210.6325

  2. Avila, A., Damanik, D.: Absolute continuity of the integrated density of states for the almost Mathieu operator with non-critical coupling. Invent. Math. 172, 439–453 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Avila, A., Jitomirskaya, S.: The Ten Martini problem. Ann. of Math. 170, 303–342 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benedicks, M.: Positive harmonic functions vanishing on the boundary of certain domains in \(\mathbb{R}^n\). Ark. Mat. 18(1), 53–72 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. de Branges, L.: Hilbert spaces of entire functions. Prentice-Hall Inc, Englewood Cliffs (1968)

    MATH  Google Scholar 

  6. Breuer, J., Ryckman, E., Simon, B.: Equality of the spectral and dynamical definitions of reflection. Commun. Math. Phys. 295(2), 531–550 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Breuer, J., Ryckman, E., Zinchenko, M.: Right limits and reflectionless measures for CMV matrices. Commun. Math. Phys. 292(1), 1–28 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Craig, W.: The trace formula for Schrödinger operators on the line. Commun. Math. Phys. 126(2), 379–407 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Damanik, D.: Lyapunov exponents and spectral analysis of ergodic Schrödinger operators: a survey of Kotani theory and its applications, Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday. Proceedings of Symposia in Pure Mathematics, vol. 56, Part 2, pp. 539–563. Am. Math. Soc., Providence, RI (2007)

  10. Damanik, D., Killip, R., Simon, B.: Perturbations of orthogonal polynomials with periodic recursion coefficients. Ann. Math. 171(2), 1931–2010 (2010)

    Google Scholar 

  11. Eremenko, A., Yuditskii, P.: Comb functions. Contemp. Math. 578, 99–118 (2012)

    Article  MathSciNet  Google Scholar 

  12. Goldstein, M., Schlag, W.: On resonances and the formation of gaps in the spectrum of quasi-periodic Schrödinger equations. Ann. Math. 173, 337–475 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hasumi, M.: Hardy Classes on infinitely connected Riemann surfaces. Lecture Notes in Mathametics, vol. 1027, pp. 1–280 . Springer. Berlin (1983)

  14. Jitomirskaya, S., Marx, C.A.: Analytic quasi-periodic Schrödinger operators and rational frequency approximants. Preprint (2012) (available from http://www.math.uci.edu/~cmarx/research/)

  15. Killip, R., Simon, B.: Sum rules for Jacobi matrices and their applications to spectral theory. Ann. Math. 158(2), 253–321 (2003)

    Google Scholar 

  16. Kotani, S.: Jacobi matrices with random potentials taking finitely many values. Rev. Math. Phys. 1, 129–133 (1989)

    Google Scholar 

  17. Kotani, S.: KdV flow on generalized reflectionless potentials. J. Math. Phys. Anal. Geom. 4(4), 490–528 (2008)

    Google Scholar 

  18. Krüger, H.: Probabilistic averages of Jacobi operators. Commun. Math. Phys. 295(3), 853–875 (2010). doi:10.1007/s00220-010-1014-y

    Article  MATH  Google Scholar 

  19. Koosis, P.: The logarithmic integral. I, pp. XVI+606. Cambridge University Press, Cambridge (1988)

  20. Marchenko, V.: Sturm–Liouville Operators and Applications. Birkhäuser, Basel (1986)

    Book  MATH  Google Scholar 

  21. Neville, Ch.: Invariant subspaces of hardy classes on infinitely connected open surfaces. Mem. Am. Math. Soc (160), 1–151 (1975)

  22. Nazarov, F., Volberg, A., Yuditskii, P.: Reflectionless measures with a point mass and singular continuous component, arXiv:0711.0948

  23. Pastur, L., Figotin, A.: Spectra of Random and Almost-Periodic Operators. Grundlehren der Mathematischen Wissenschaften, vol. 297. Springer, Berlin (1992)

  24. Peherstorfer, F., Yuditskii, P.: Almost periodic Verblunsky coefficients and reproducing kernels on Riemann surfaces. J. Approx. Theory 139, 91–106 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Poltoratski, A., Remling, Ch.: Reflectionless Herglotz functions and Jacobi matrices. Commun. Math. Phys. 288(3), 1007–1021 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Poltoratski, A., Remling, C.: Approximation results for reflectionless Jacobi matrices. Int. Math. Res. Not. 16, 3575–3617 (2011)

    MathSciNet  Google Scholar 

  27. Pommerenke, Ch.: On the Green’s function of Fuchsian groups. Ann. Acad. Sci. Fenn. 2, 409–427 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  28. Remling, C.: Uniqueness of reflectionless Jacobi matrices and the Denisov–Rakhmanov theorem. Proc. Am. Math. Soc. 139, 2175–2182 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Remling, C.: The absolutely continuous spectrum of Jacobi matrices. Ann. Math. 174(2), 125–171 (2011)

    Google Scholar 

  30. Simon, B.: Schrödinger operators in the twenty-first century. Mathematical Physics, vol. 2000, pp. 283–288. Imperical College Press, London (2000)

  31. Simon, B.: Orthogonal polynomials on the unit circle. Part 2. Spectral Theory, vol. 54. American Mathematical Society Colloquium Publications, Providence

  32. Sodin, M., Yuditskii, P.: Almost periodic Jacobi matrices with homogeneous spectrum, infinite-dimensional Jacobi inversion, and Hardy spaces of character-automorphic functions. J. Geom. Anal. 7, 387–435 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  33. Volberg, A., Yuditskii, P.: On the inverse scattering problem for Jacobi matrices with the spectrum on an interval, a finite system of intervals or a Cantor set of positive length. Commun. Math. Phys. 226(3), 567–605 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Volberg, A., Yuditskii, P.: Kotani-last problem and Hardy spaces on surfaces of Widom type, arXiv:1210.7069

  35. Widom, H.: \(H_p\) sections of vector bundles over Riemann surfaces. Ann. Math. 94, 304–324 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  36. Yuditskii, P.: A special case of de Branges’ theorem on the inverse monodromy problem. Integral Equ. Oper. Theory 39(2), 229–252 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  37. Yuditskii, P.: On the direct cauchy theorem in widom domains: positive and negative examples. Comput. Methods Funct. Theory 11(2), 395–414 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  38. Yuditskii, P.: On \(L^1\) extremal problem for entire functions, arXiv:1204.4620

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Volberg.

Additional information

A. Volberg is supported by NSF grant DMS 0758552 and DMS1265549, he also thanks the J. Kepler University of Linz for the hospitality during his visit in summer 2012. P. Yuditskii is supported by the Austrian Science Fund FWF, project no: P25591-N18.

Appendix: the resolvent representation for the transfer matrix and the Christoffel-Darboux identity

Appendix: the resolvent representation for the transfer matrix and the Christoffel-Darboux identity

For \({\mathcal {K}}=\hat{H}^2(\alpha )\ominus \check{H}^2(\alpha )\) we define \(T:{\mathcal {K}}\oplus \{\check{e}_0\}\rightarrow \{\hat{e}_{-1}\}\oplus {\mathcal {K}}\) by

$$\begin{aligned} T=P_{\{\hat{e}_{-1}\}\oplus {\mathcal {K}}}\,{\mathfrak {z}}\cdot \,| {\mathcal {K}}\oplus \{\check{e}_0\}. \end{aligned}$$
(9.1)

We define \(\hat{\mathcal {E}}\) and \(\check{\mathcal {E}}\) acting in \({\mathbb {C}}^2\) by

$$\begin{aligned} \check{\mathcal {E}}\begin{bmatrix} c_{-1}\\ c_0 \end{bmatrix} =c_{-1}\check{p}_0\check{e}_{-1}+c_0\check{e}_0 ,\quad \hat{\mathcal {E}}\begin{bmatrix} c_{-1}\\ c_0 \end{bmatrix} =c_{-1}\hat{p}_0\hat{e}_{-1}+c_0\hat{e}_0. \end{aligned}$$
(9.2)

Proposition 9.1

For \(T\), \(\hat{\mathcal {E}}\), \(\check{\mathcal {E}}\) defined in (9.1), (9.2), the transfer matrix (5.1) is of the form

$$\begin{aligned} {\mathfrak {A}}(z)= \begin{bmatrix} 0&\quad 0\\ 0&\quad \langle \hat{e}_0,\check{e}_0\rangle \end{bmatrix} + j \check{\mathcal {E}}^*P_{{\mathcal {K}}\oplus \{\check{e}_0\}}(T-z P_{\mathcal {K}})^{-1}P_{\{\hat{e}_{-1}\}\oplus {\mathcal {K}}}\hat{\mathcal {E}}. \end{aligned}$$
(9.3)

Proof

With necessity the vector \((T-z_0 P_{\mathcal {K}})^{-1}\hat{e}_{-1}\) is of the form

$$\begin{aligned} x\oplus c \check{e}_0=\frac{\hat{e}_{-1}-A \check{e}_{-1}-B\check{e}_{0}}{{\mathfrak {z}}-z_0}\oplus c \check{e}_0. \end{aligned}$$

Since \(x\in H^2\) we have

$$\begin{aligned} \hat{e}_{-1}(\zeta _0)= \begin{bmatrix} \check{e}_{-1}(\zeta _0)&\check{e}_{0}(\zeta _0) \end{bmatrix} \begin{bmatrix} A\\ B \end{bmatrix} \end{aligned}$$
(9.4)

Since \(x\in \hat{H}^2(\alpha )\ominus \check{H}^2(\alpha )\) the dual vector \(\tilde{x}(\zeta )\), such that \(b(\zeta )\tilde{x}(\zeta )=\Delta (\zeta ) x(\bar{\zeta })\) for \(\zeta \in {\mathbb {T}}\), belongs to \(\hat{H}^2(\alpha ^{-1}\mu ^{-1}\nu )\ominus \check{H}^2(\alpha ^{-1}\mu ^{-1}\nu )\). Thus, in notations (2.20) we have

$$\begin{aligned} \widetilde{\hat{e}}_{0} (\zeta _0)= \begin{bmatrix} \widetilde{\check{e}}_{0}(\zeta _0)&\widetilde{\check{e}}_{-1}(\zeta _0) \end{bmatrix} \begin{bmatrix} A\\ B \end{bmatrix} \end{aligned}$$
(9.5)

In this case, indeed,

$$\begin{aligned} (T-z_0P_{\mathcal {K}}) x&= P_{\mathcal {K}}({\mathfrak {z}}-z_0)x+P_{\{\hat{e}_{-1}\}}{\mathfrak {z}}x\\&= P_{\mathcal {K}}(\hat{e}_{-1}-A \check{e}_{-1}-B \check{e}_{0})+\hat{e}_{-1}\langle x, \hat{e}_0\rangle \hat{p}_0\\&= -A P_{\mathcal {K}}\check{e}_{-1}+\hat{p}_0\frac{(b\hat{e}_{-1})(0)-A(b\check{e}_{-1})(0)}{(b{\mathfrak {z}})(0)\hat{e}_0(0)}\hat{e}_{-1} \end{aligned}$$

and \(T\check{e}_0=P_{{\{\hat{e}_{-1}\}\oplus {\mathcal {K}}}} \check{p}_0 \check{e}_{-1}=\check{p}_0 P_{{\mathcal {K}}} \check{e}_{-1}+ \check{p}_0\frac{(b\check{e}_{-1})(0)}{(b\hat{e}_{-1})(0)}\hat{e}_{-1}\). That is, for \(c=A/\check{p}_0\) we have

$$\begin{aligned} (T\!-\!zP_{\mathcal {K}})(x+c \check{e}_0)\!=\!\left( A\frac{(b\check{e}_{-1})(0)}{(b\hat{e}_{-1})(0)} \!+\!\frac{(b\hat{e}_{-1})(0)-A(b\check{e}_{-1})(0)}{(b \hat{e}_{-1})(0)}\right) \hat{e}_{-1}\!= \!\hat{e}_{-1} \end{aligned}$$

Thus

$$\begin{aligned} (T-zP_{\mathcal {K}})^{-1} \hat{e}_{-1}= \frac{\hat{e}_{-1}-A \check{e}_{-1}-B\check{e}_{0}}{{\mathfrak {z}}-z_0}\oplus \frac{A}{\check{p}_0} \check{e}_0, \end{aligned}$$
(9.6)

Similarly we get

$$\begin{aligned} (T-zP_{\mathcal {K}})^{-1} P_{\mathcal {K}}\hat{e}_{0}= \frac{\hat{e}_{0}-C \check{e}_{-1}-D\check{e}_{0}}{{\mathfrak {z}}-z_0}\oplus \frac{C}{\check{p}_0} \check{e}_0, \end{aligned}$$
(9.7)

where

$$\begin{aligned} \begin{bmatrix} \hat{e}_{0}(\zeta _0)\\ \widetilde{\hat{e}}_{-1} (\zeta _0) \end{bmatrix} = \begin{bmatrix} \check{e}_{-1}(\zeta _0)&\quad \check{e}_{0}(\zeta _0)\\ \widetilde{\check{e}}_{0}(\zeta _0)&\quad \widetilde{\check{e}}_{-1}(\zeta _0) \end{bmatrix} \begin{bmatrix} C\\ D \end{bmatrix}. \end{aligned}$$
(9.8)

We see that all four entries \(A,B,C,D\) given in (9.4), (9.5), (9.8) actually form the transfer matrix \({\mathfrak {A}}\). Using (9.6), (9.7) and the reproducing properties of the vectors \(\check{e}_{-1}, \check{e}_0\) we get (9.3). \(\square \)

Lemma 9.2

The following Christoffel-Darboux type identity holds

$$\begin{aligned} \frac{{\mathfrak {A}}^*(z)j{\mathfrak {A}}(z)-j}{z-\bar{z}}=\hat{\mathcal {E}}^*P_{\{\hat{e}_{-1}\}\oplus {\mathcal {K}}}(T^*-\bar{z} P_{\mathcal {K}})^{-1} P_{\mathcal {K}}(T-z P_{\mathcal {K}})^{-1}P_{\{\hat{e}_{-1}\}\oplus {\mathcal {K}}}\hat{\mathcal {E}}.\nonumber \\ \end{aligned}$$
(9.9)

Proof

We start with an easy identity

$$\begin{aligned} P_{\mathcal {K}}T-T^*P_{\mathcal {K}}=\check{\mathcal {E}}\begin{bmatrix} 0&\quad \! 1\\ -1&\quad \!0 \end{bmatrix} \check{\mathcal {E}}^*. \end{aligned}$$
(9.10)

Indeed, for \(f=x+ c\check{e}_{0}\) we have \(\langle P_{\mathcal {K}}T (x+c\check{e}_{0}),x+c\check{e}_{0}\rangle = \langle {\mathfrak {z}}(x+c\check{e}_{0}),x\rangle = \langle {\mathfrak {z}}x,x\rangle +c \langle \check{p}_0 \check{e}_{-1},x\rangle =\langle {\mathfrak {z}}x,x\rangle +\check{p}_0 \langle f,\check{e}_{0}\rangle \langle \check{e}_{-1},f\rangle \). We can rewrite (9.10) in a more sophisticated form

$$\begin{aligned} (z-\bar{z}) P_{{\mathcal {K}}}=\check{\mathcal {E}}\begin{bmatrix} 0&\quad \! 1\\ -1&\quad \! 0 \end{bmatrix} \check{\mathcal {E}}^* - P_{\mathcal {K}}(T-zP_k)+(T^*-\bar{z} P_k)P_{\mathcal {K}}. \end{aligned}$$
(9.11)

Now we multiply (9.11) by \(P_{{\mathcal {K}}\oplus \{\check{e}_0\}}(T-z P_{\mathcal {K}})^{-1}P_{\{\hat{e}_{-1}\}\oplus {\mathcal {K}}}\hat{\mathcal {E}}\) from the right and by the conjugated expression from the left. We use (9.6), (9.7) and the reproducing properties of \(\hat{e}_{-1}, \hat{e}_0\) to obtain (9.9). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volberg, A., Yuditskii, P. Kotani–Last problem and Hardy spaces on surfaces of Widom type. Invent. math. 197, 683–740 (2014). https://doi.org/10.1007/s00222-013-0495-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-013-0495-7

Navigation