Skip to main content
Log in

Strictly toral dynamics

  • Published:
Inventiones mathematicae Aims and scope

Abstract

This article deals with nonwandering (e.g. area-preserving) homeomorphisms of the torus \(\mathbb {T}^{2}\) which are homotopic to the identity and strictly toral, in the sense that they exhibit dynamical properties that are not present in homeomorphisms of the annulus or the plane. This includes all homeomorphisms which have a rotation set with nonempty interior. We define two types of points: inessential and essential. The set of inessential points \(\operatorname {Ine}(f)\) is shown to be a disjoint union of periodic topological disks (“elliptic islands”), while the set of essential points \(\operatorname {Ess}(f)\) is an essential continuum, with typically rich dynamics (the “chaotic region”). This generalizes and improves a similar description by Jäger. The key result is boundedness of these “elliptic islands”, which allows, among other things, to obtain sharp (uniform) bounds of the diffusion rates. We also show that the dynamics in \(\operatorname {Ess}(f)\) is as rich as in \(\mathbb {T}^{2}\) from the rotational viewpoint, and we obtain results relating the existence of large invariant topological disks to the abundance of fixed points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. By a theorem of Epstein [6], this is equivalent to saying that f is homotopic to the identity.

References

  1. Brown, M., Kister, J.M.: Invariance of complementary domains of a fixed point set. Proc. Am. Math. Soc. 91(3), 503–504 (1984)

    MATH  MathSciNet  Google Scholar 

  2. Brown, R.: The Lefschetz Fixed Point Theorem. Scott, Foresman, Glenview (1971)

    MATH  Google Scholar 

  3. Chirikov, B.V.: A universal instability of many-dimensional oscillator systems. Phys. Rep. 52(5), 264–379 (1979)

    Article  MathSciNet  Google Scholar 

  4. Dávalos, P.: On torus homeomorphisms whose rotation set is an interval. Math. Z. (2012). doi:10.1007/s00209-013-1168-3g. arXiv:1111.2378

    Google Scholar 

  5. Daverman, R.J.: Decompositions of Manifolds. Pure and Applied Mathematics, vol. 124. Academic Press, Orlando (1986)

    MATH  Google Scholar 

  6. Epstein, D.B.A.: Curves on 2-manifolds and isotopies. Acta Math. 115, 83–107 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fathi, A.: An orbit closing proof of Brouwer’s lemma on translation arcs. Enseign. Math. (2) 33(3–4), 315–322 (1987)

    MATH  MathSciNet  Google Scholar 

  8. Franks, J.: Recurrence and fixed points of surface homeomorphisms. Ergod. Theory Dyn. Syst. 8, 99–107 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Franks, J.: Realizing rotation vectors for torus homeomorphisms. Trans. Am. Math. Soc. 311(1), 107–115 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Franks, J.: The rotation set and periodic points for torus homeomorphisms. In: Dynamical Systems and Chaos, Vol. 1, Hachioji, 1994, pp. 41–48. World Scientific, River Edge (1995)

    Google Scholar 

  11. Furstenberg, H.: Strict ergodicity and transformation of the torus. Am. J. Math. 83, 573–601 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gutiérrez, C.: Smoothing continuous flows and the converse of Denjoy-Schwartz theorem. An. Acad. Bras. Ciênc. 51(4), 581–589 (1979)

    MATH  Google Scholar 

  13. Jäger, T.: The concept of bounded mean motion for toral homeomorphisms. Dyn. Syst. 24(3), 277–297 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jäger, T.: Linearization of conservative toral homeomorphisms. Invent. Math. 176(3), 601–616 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jäger, T.: Elliptic stars in a chaotic night. J. Lond. Math. Soc. 84(3), 595–611 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jaulent, O.: Existence d’un feuilletage positivement transverse à un homéomorphisme de surface. Preprint (2011)

  17. Kocsard, A., Koropecki, A.: A mixing-like property and inexistence of invariant foliations for minimal diffeomorphisms of the 2-torus. Proc. Am. Math. Soc. 137(10), 3379–3386 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Koropecki, A.: Aperiodic invariant continua for surface homeomorphisms. Math. Z. 266(1), 229–236 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Koropecki, A., Tal, F.A.: Area-preserving irrotational diffeomorphisms of the torus with sublinear diffusion. To appear in Proc. Amer. Math. Soc. (2012). arXiv:1206.2409

  20. Koropecki, A., Tal, F.A.: Bounded and unbounded behavior for area-preserving rational pseudo-rotations. arXiv:1207.5573

  21. Le Calvez, P.: Une version feuilletée équivariante du théorème de translation de Brouwer. Publ. Math. Inst. Hautes Études Sci. 102, 1–98 (2005)

    Article  MATH  Google Scholar 

  22. Le Calvez, P.: Periodic orbits of Hamiltonian homeomorphisms of surfaces. Duke Math. J. 133(1), 125–184 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lebœuf, P., Kurchan, J., Feingold, M., Arovas, D.P.: Phase-space localization: topological aspects of quantum chaos. Phys. Rev. Lett. 65(25), 3076–3079 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  24. Llibre, J., MacKay, R.S.: Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity. Ergod. Theory Dyn. Syst. 11(1), 115–128 (1991)

    Article  MathSciNet  Google Scholar 

  25. Misiurewicz, M., Ziemian, K.: Rotation sets for maps of tori. J. Lond. Math. Soc. 40(2), 490–506 (1989)

    Article  MathSciNet  Google Scholar 

  26. Misiurewicz, M., Ziemian, K.: Rotation sets and ergodic measures for torus homeomorphisms. Fundam. Math. 137(1), 45–52 (1991)

    MATH  MathSciNet  Google Scholar 

  27. Moser, J.: On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Gött. Math.-Phys. Kl. II, 1–20 (1962)

  28. Nemitskii, V.V., Stepanov, V.V.: Qualitative Theory of Differential Equations. Dover, New York (1989)

    Google Scholar 

  29. Pekarsky, S., Rom-Kedar, V.: Uniform stochastic web in low-dimensional Hamiltonian systems. Phys. Lett. A 225(4–6), 274–286 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Solntzev, G.: On the asymptotic behaviour of integral curves of a system of differential equations. Izv. Akad. Nauk SSSR, Ser. Mat. 9, 233–240 (1945)

    MATH  MathSciNet  Google Scholar 

  31. Whitney, H.: Regular families of curves. Ann. Math. (2) 34(2), 244–270 (1933)

    Article  MathSciNet  Google Scholar 

  32. Whitney, H.: On regular families of curves. Bull. Am. Math. Soc. 47, 145–147 (1941)

    Article  MathSciNet  Google Scholar 

  33. Zaslavskiĭ, G.M., Zakharov, M.Y., Sagdeev, R.Z., Usikov, D.A., Chernikov, A.A.: Stochastic web and diffusion of particles in a magnetic field. Sov. Phys. JETP 64(2), 294–303 (1986). Translated from Zh. Èksper. Teoret. Fiz. 91(2), 500–516 (1986)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank T. Jäger and the anonymous referees for the corrections and suggestions that helped improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Koropecki.

Additional information

The first author was partially supported by CNPq-Brasil. The second author was partially supported by FAPESP and CNPq-Brasil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koropecki, A., Tal, F.A. Strictly toral dynamics. Invent. math. 196, 339–381 (2014). https://doi.org/10.1007/s00222-013-0470-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-013-0470-3

Keywords

Navigation