Skip to main content
Log in

On special zeros of p-adic L-functions of Hilbert modular forms

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Let E be a modular elliptic curve over a totally real number field F. We prove the weak exceptional zero conjecture which links a (higher) derivative of the p-adic L-function attached to E to certain p-adic periods attached to the corresponding Hilbert modular form at the places above p where E has split multiplicative reduction. Under some mild restrictions on p and the conductor of E we deduce the exceptional zero conjecture in the strong form (i.e. where the automorphic p-adic periods are replaced by the \(\mathcal {L}\)-invariants of E defined in terms of Tate periods) from a special case proved earlier by Mok. Crucial for our method is a new construction of the p-adic L-function of E in terms of local data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In principle our construction is related to Manin’s [19]. However in our set-up the measure μ π is build in a simple manner from local distributions \(\mu_{\pi_{v}}\) at each place v of F.

  2. Due to V. Paskunas.

References

  1. Barthel, L., Livne, R.: Modular representations of GL 2 of a local field: the ordinary, unramified case. J. Number Theory 55, 1–27 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bertolini, M., Darmon, H., Iovita, A.: Families of automorphic forms on definite quaternion algebras and Teitelbaum’s conjecture. Astérisque 331, 29–64 (2010)

    MathSciNet  Google Scholar 

  3. Breuil, C.: Invariant \(\mathcal {L}\) et série spéciale p-adique. Ann. Sci. Éc. Norm. Super. 37, 559–610 (2004)

    MATH  MathSciNet  Google Scholar 

  4. Brown, K.S.: Cohomology of Groups. Graduate Texts in Mathematics, vol. 87. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  5. Bump, D.: Automorphic Forms and Representations. Cambridge Studies in Advanced Mathematics, vol. 55. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  6. Bushnell, C., Henniart, G.: The Local Langlands Conjecture for \(\operatorname{GL}(2)\). Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  7. Carayol, H.: Sur les représentations -adiques associées aux formes modulaires de Hilbert. Ann. Sci. Éc. Norm. Super. 19, 409–468 (1986)

    MATH  MathSciNet  Google Scholar 

  8. Casselman, W.: On some results of Atkin and Lehner. Math. Ann. 201, 301–314 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  9. Charollois, P., Dasgupta, S.: Integral Eisenstein cocycles on \(\operatorname{GL}_{n}\), I: Szech’s cocycle and p-adic L-functions of totally real fields. Preprint, available at arXiv:1206.3050

  10. Dabrowski, A.: P-adic L-functions of Hilbert modular forms. Ann. Inst. Fourier 44, 1025–1041 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Darmon, H.: Integration on \(\mathcal {H}_{p} \times \mathcal {H}\) and arithmetic applications. Ann. Math. 154, 589–639 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Friedberg, S., Hoffstein, J.: Nonvanishing theorems for automorphic L-functions on \(\operatorname{GL}(2)\). Ann. Math. 142, 385–423 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Greenberg, M.: Stark-Heegner points and the cohomology of quaternionic Shimura varieties. Duke Math. J. 147, 541–575 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Greenberg, M., Iovita, A., Spieß, M.: (in preparation)

  15. Greenberg, R., Stevens, G.: p-adic L-functions and p-adic periods of modular forms. Invent. Math. 111, 407–447 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Harder, G.: Eisenstein cohomology of arithmetic groups. The case \(\operatorname{GL}_{2}\). Invent. Math. 89, 37–118 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hida, H.: \(\mathcal {L}\)-invariants of Tate curves. Pure Appl. Math. Q. 5, 1343–1384 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mac Lane, S.: Homology. Springer, Berlin (1963)

    Book  Google Scholar 

  19. Manin, Y.: Non-archimedean integration and Jacquet-Langlands p-adic L-functions. Usp. Mat. Nauk 31, 5–54 (1976) (in Russian)

    MathSciNet  Google Scholar 

  20. Mazur, B., Tate, J., Teitelbaum, J.: On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math. 84, 1–48 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mok, C.P.: The exceptional zero conjecture for Hilbert modular forms. Compos. Math. 145, 1–55 (2007)

    Article  MathSciNet  Google Scholar 

  22. Orton, L.: An elementary proof of a weak exceptional zero conjecture. Can. J. Math. 56, 373–405 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Panchishkin, A.A.: Non-Archimedean L-Functions Associated with Siegel and Hilbert Modular Forms. Lect. Notes in Math., vol. 1471. Springer, Berlin (1991)

    Book  Google Scholar 

  24. Serre, J.-P.: Cohomologie des groupes discrets. Ann. Math. Stud. 70, 77–169 (1971)

    Google Scholar 

  25. Serre, J.-P.: Cours au Collège de France 1987–1988

  26. Spieß, M.: Shintani cocycles and vanishing order of L p (χ,s) at s=0. Preprint, available at arXiv:1203.6689

  27. Taylor, R.: On Galois representations associated to Hilbert modular forms. Invent. Math. 98, 265–280 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Teitelbaum, J.: Values of p-adic L-functions and a p-adic Poisson kernel. Invent. Math. 101, 395–410 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Waldspurger, J.: Correspondances de Shimura et quaternions. Forum Math. 3, 219–307 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wintenberger, J.-P.: Potential modularity of elliptic curves over totally real fields. Appendix to: J. Nekovar, On the parity of ranks of Selmer groups IV. Compos. Math. 145, 1351–1359 (2009)

Download references

Acknowledgements

I thank Vytautas Paskunas for several helpful conversations and Kumar Murty for providing me with the reference [12]. I am grateful to H. Deppe, L. Gehrmann, S. Molina and M. Seveso for useful comments on an earlier draft. Also the referee suggested several useful improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Spieß.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spieß, M. On special zeros of p-adic L-functions of Hilbert modular forms. Invent. math. 196, 69–138 (2014). https://doi.org/10.1007/s00222-013-0465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-013-0465-0

Mathematics Subject Classification (2000)

Navigation