Skip to main content
Log in

Regularity of solutions to the polyharmonic equation in general domains

  • Published:
Inventiones mathematicae Aims and scope

Abstract

The present paper establishes boundedness of \([m-\frac{n}{2}+\frac{1}{2} ]\) derivatives for the solutions to the polyharmonic equation of order 2m in arbitrary bounded open sets of \({\mathbb{R}}^{n}\), 2≤n≤2m+1, without any restrictions on the geometry of the underlying domain. It is shown that this result is sharp and cannot be improved in general domains. Moreover, it is accompanied by sharp estimates on the polyharmonic Green function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The idea of the proof has been suggested by Marcel Filoche.

References

  1. Adams, D.R.: L p potential theory techniques and nonlinear PDE. In: Potential Theory, Nagoya, 1990, pp. 1–15. de Gruyter, Berlin (1992)

    Chapter  Google Scholar 

  2. Adolfsson, V., Pipher, J.: The inhomogeneous Dirichlet problem for Δ2 in Lipschitz domains. J. Funct. Anal. 159(1), 137–190 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Agmon, S.: Maximum theorems for solutions of higher order elliptic equations. Bull. Am. Math. Soc. 66, 77–80 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  4. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  5. Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn. Applied Mathematical Sciences, vol. 107. Springer, New York (2005)

    MATH  Google Scholar 

  6. Babuška, I.: The theory of small changes in the domain of existence in the theory of partial differential equations and its applications. In: Differential Equations and Their Applications, Proc. Conf., Prague, 1962, pp. 13–26 (1963)

    Google Scholar 

  7. Aronszajn, N., Creese, T., Lipkin, L.: Polyharmonic Functions. Oxford Mathematical Monographs. Oxford Science Publications. Clarendon/Oxford University Press, New York (1983). Notes taken by Eberhard Gerlach

    MATH  Google Scholar 

  8. Chang, S.-Y.A.: Conformal invariants and partial differential equations. Bull., New Ser., Am. Math. Soc. 42(3), 365–393 (2005) (electronic)

    Article  MATH  Google Scholar 

  9. Chang, S.-Y.A., Yang, P.C.: Non-linear partial differential equations in conformal geometry. In: Proceedings of the International Congress of Mathematicians, Beijing, vol. I, pp. 189–207. Higher Education Press, Beijing (2002)

    Google Scholar 

  10. Ciarlet, Ph.: Mathematical Elasticity. Vol. II: Theory of Plates. Studies in Mathematics and Its Applications, vol. 27. North-Holland, Amsterdam (1997)

    Google Scholar 

  11. Dahlberg, B., Kenig, C., Verchota, G.: The Dirichlet problem for the biharmonic equation in a Lipschitz domain. Ann. Inst. Fourier (Grenoble) 36(3), 109–135 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dahlberg, B.E.J., Kenig, C.E., Pipher, J., Verchota, G.C.: Area integral estimates for higher order elliptic equations and systems. Ann. Inst. Fourier (Grenoble) 47(5), 1425–1461 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dall’Acqua, A., Sweers, G.: Estimates for Green function and Poisson kernels of higher-order Dirichlet boundary value problems. J. Differ. Equ. 205(2), 466–487 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Duffin, R.J.: On a question of Hadamard concerning super-biharmonic functions. J. Math. Phys. 27, 253–258 (1949)

    MATH  MathSciNet  Google Scholar 

  15. Garabedian, P.R.: A partial differential equation arising in conformal mapping. Pac. J. Math. 1, 485–524 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hadamard, J.: Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées. Mém. Acad. Sci. 2, 33 (1908)

    Google Scholar 

  17. Kenig, C.: Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems. CBMS Regional Conference Series in Mathematics, vol. 83. Am. Math. Soc., Providence (1994). Published for the Conference Board of the Mathematical Sciences, Washington, DC

    MATH  Google Scholar 

  18. Kilty, J., Shen, Z.: A bilinear estimate for biharmonic functions in Lipschitz domains. Math. Ann. 349(2), 367–394 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kozlov, V., Maz’ya, V., Rossmann, J.: Elliptic Boundary Value Problems in Domains with Point Singularities. Mathematical Surveys and Monographs, vol. 52. Am. Math. Soc., Providence (1997)

    MATH  Google Scholar 

  20. Kozlov, V., Maz’ya, V., Rossmann, J.: Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations. Mathematical Surveys and Monographs, vol. 85. Am. Math. Soc., Providence (2001)

    MATH  Google Scholar 

  21. Krasovskiĭ, Ju.P.: Isolation of the singularity in Green’s function. Izv. Akad. Nauk SSSR, Ser. Mat. 31, 977–1010 (1967)

    MathSciNet  Google Scholar 

  22. Mayboroda, S., Maz’ya, V.: Boundedness of the gradient of a solution and Wiener test of order one for the biharmonic equation. Invent. Math. 175(2), 287–334 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mayboroda, S., Maz’ya, V.: Pointwise estimates for the polyharmonic Green function in general domains. In: Cialdea, A., et al. (eds.) Analysis, Partial Differential Equations and Applications. The Vladimir Maz’ya Anniversary Volume. Selected Papers of the International Workshop, Rome, Italy, June 30–July 3, 2008. Operator Theory: Advances and Applications, vol. 193, pp. 143–158. Birkhäuser, Basel (2009)

    Chapter  Google Scholar 

  24. Maz’ya, V.: Behaviour of solutions to the Dirichlet problem for the biharmonic operator at a boundary point. In: Equadiff IV, Proc. Czechoslovak Conf. Differential Equations and Their Applications, Prague, 1977. Lecture Notes in Math., vol. 703, pp. 250–262. Springer, Berlin (1979)

    Chapter  Google Scholar 

  25. Maz’ya, V.: On Wiener’s type regularity of a boundary point for higher order elliptic equations. In: Nonlinear Analysis, Function Spaces and Applications, Prague, 1998, vol. 6, pp. 119–155. Acad. Sci. Czech Repub., Prague (1999)

    Google Scholar 

  26. Maz’ya, V.: The Wiener test for higher order elliptic equations. Duke Math. J. 115(3), 479–512 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Maz’ya, V., Mitrea, M., Shaposhnikova, T.: The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients. J. Anal. Math. 110, 167–239 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Maz’ya, V., Nazarov, S.A.: Paradoxes of the passage to the limit in solutions of boundary value problems for the approximation of smooth domains by polygons. Izv. Akad. Nauk SSSR, Ser. Mat. 50(6), 1156–1177 (1986)

    MathSciNet  Google Scholar 

  29. Maz’ya, V., Nazarov, S.A., Plamenevskiĭ, B.A.: Singularities of solutions of the Dirichlet problem in the exterior of a thin cone. Mat. Sb. (N.S.) 122(164)(4), 435–457 (1983). English translation: Math. USSR Sb. 50(2), 415–437 (1985)

    Google Scholar 

  30. Maz’ya, V., Plamenevskiĭ, B.A.: Asymptotic behavior of the fundamental solutions of elliptic boundary value problems in domains with conical points. In: Boundary Value Problems. Spectral Theory. Probl. Mat. Anal., vol. 7, pp. 100–145. Leningrad University, Leningrad (1979) (in Russian)

    Google Scholar 

  31. Maz’ya, V., Rossmann, J.: On the Agmon-Miranda maximum principle for solutions of elliptic equations in polyhedral and polygonal domains. Ann. Glob. Anal. Geom. 9(3), 253–303 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  32. Maz’ya, V., Rossmann, J.: On the Agmon-Miranda maximum principle for solutions of strongly elliptic equations in domains of \(\mathbb{R}^{n}\) with conical points. Ann. Glob. Anal. Geom. 10(2), 125–150 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  33. Maz’ya, V., Rossmann, J.: Elliptic Equations in Polyhedral Domains. Mathematical Surveys and Monographs, vol. 162. Am. Math. Soc., Providence (2010)

    Book  MATH  Google Scholar 

  34. Meleshko, V.V.: Selected topics in the history of the two-dimensional biharmonic problem. Appl. Mech. Rev. 56, 33–85 (2003)

    Article  Google Scholar 

  35. Mitrea, I.: Mapping properties of layer potentials associated with higher-order elliptic operators in Lipschitz domains. In: Topics in Operator Theory, Vol. 2: Systems and Mathematical Physics. Oper. Theory Adv. Appl., vol. 203, pp. 363–407. Birkhäuser, Basel (2010)

    Chapter  Google Scholar 

  36. Mitrea, I., Mitrea, M., Wright, M.: Optimal estimates for the inhomogeneous problem for the bi-Laplacian in three-dimensional Lipschitz domains. J. Math. Sci. 172(1), 24–134 (2011)

    MATH  MathSciNet  Google Scholar 

  37. Miranda, C.: Formule di maggiorazione e teorema di esistenza per le funzioni biarmoniche de due variabili. G. Mat. Battaglini (4) 2(78), 97–118 (1948)

    Google Scholar 

  38. Miranda, C.: Teorema del massimo modulo e teorema di esistenza e di unicità per il problema di Dirichlet relativo alle equazioni ellittiche in due variabili. Ann. Mat. Pura Appl. (4) 46, 265–311 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  39. Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Academia/Masson, Prague/Paris (1967)

    MATH  Google Scholar 

  40. Pipher, J., Verchota, G.C.: Area integral estimates for the biharmonic operator in Lipschitz domains. Trans. Am. Math. Soc. 327(2), 903–917 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  41. Pipher, J., Verchota, G.: The Dirichlet problem in L p for the biharmonic equation on Lipschitz domains. Am. J. Math. 114(5), 923–972 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  42. Pipher, J., Verchota, G.: A maximum principle for biharmonic functions in Lipschitz and C 1 domains. Comment. Math. Helv. 68(3), 385–414 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  43. Pipher, J., Verchota, G.: Dilation invariant estimates and the boundary Gårding inequality for higher order elliptic operators. Ann. Math. (2) 142(1), 1–38 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  44. Pipher, J., Verchota, G.: Maximum principles for the polyharmonic equation on Lipschitz domains. Potential Anal. 4(6), 615–636 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  45. Shapiro, H.S., Tegmark, M.: An elementary proof that the biharmonic Green function of an eccentric ellipse changes sign. SIAM Rev. 36(1), 99–101 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  46. Shen, Z.: The L p Dirichlet problem for elliptic systems on Lipschitz domains. Math. Res. Lett. 13(1), 143–159 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  47. Shen, Z.: Necessary and sufficient conditions for the solvability of the L p Dirichlet problem on Lipschitz domains. Math. Ann. 336(3), 697–725 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  48. Shen, Z.: On estimates of biharmonic functions on Lipschitz and convex domains. J. Geom. Anal. 16(4), 721–734 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  49. Shen, Z.: The L p boundary value problems on Lipschitz domains. Adv. Math. 216(1), 212–254 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  50. Skrypnik, I.V.: Methods for Analysis of Nonlinear Elliptic Boundary Value Problems. Translations of Mathematical Monographs, vol. 139. Am. Math. Soc., Providence (1994). Translated from the 1990 Russian original by Dan D. Pascali

    MATH  Google Scholar 

  51. Solonnikov, V.A.: The Green’s matrices for elliptic boundary value problems, I. Tr. Mat. Inst. Steklova 110, 107–145 (1970) (in Russian)

    MATH  MathSciNet  Google Scholar 

  52. Solonnikov, V.A.: The Green’s matrices for elliptic boundary value problems, II: boundary value problems of mathematical physics. Tr. Mat. Inst. Steklova 116, 181–216 (1971) (in Russian)

    MATH  MathSciNet  Google Scholar 

  53. Verchota, G.: The Dirichlet problem for the polyharmonic equation in Lipschitz domains. Indiana Univ. Math. J. 39(3), 671–702 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  54. Verchota, G.: Potentials for the Dirichlet problem in Lipschitz domains. In: Potential Theory, ICPT 94, Kouty, 1994, pp. 167–187. de Gruyter, Berlin (1996)

    Google Scholar 

  55. Verchota, G.: The biharmonic Neumann problem in Lipschitz domains. Acta Math. 194(2), 217–279 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  56. Verchota, G.: Boundary coerciveness and the Neumann problem for 4th order linear partial differential operators. In: Around the Research of Vladimir Maz’ya, II. Int. Math. Ser. (N.Y.), vol. 12, pp. 365–378. Springer, New York (2010)

    Chapter  Google Scholar 

Download references

Acknowledgements

We are greatly indebted to Marcel Filoche for the idea relating certain positivity properties of one-dimensional differential operators to particular configurations of the roots of associated polynomials. It has been reflected in Sect. 3 and it has ultimately significantly influenced our technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svitlana Mayboroda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayboroda, S., Maz’ya, V. Regularity of solutions to the polyharmonic equation in general domains. Invent. math. 196, 1–68 (2014). https://doi.org/10.1007/s00222-013-0464-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-013-0464-1

Keywords

Navigation