Skip to main content
Log in

Spectral shift function of higher order

  • Published:
Inventiones mathematicae Aims and scope

Abstract

This paper resolves affirmatively Koplienko’s (Sib. Mat. Zh. 25:62–71, 1984) conjecture on existence of higher order spectral shift measures. Moreover, the paper establishes absolute continuity of these measures and, thus, existence of the higher order spectral shift functions. A spectral shift function of order n∈ℕ is the function η n =η n,H,V such that

$$ \operatorname {Tr}\Biggl( f(H + V)-\sum_{k = 0}^{n-1} \frac{1}{k!}\, \frac{d^k}{dt^k} \bigl[ f(H + tV) \bigr] \bigg|_{t = 0} \Biggr) = \int_\mathbb{R}f^{(n)} (t)\, \eta_n (t)\, dt, $$

for every sufficiently smooth function f, where H is a self-adjoint operator defined in a separable Hilbert space ℍ and V is a self-adjoint operator in the n-th Schatten-von Neumann ideal S n. Existence and summability of η 1 and η 2 were established by Krein (Mat. Sb. 33:597–626, 1953) and Koplienko (Sib. Mat. Zh. 25:62–71, 1984), respectively, whereas for n>2 the problem was unresolved. We show that η n,H,V exists, integrable, and

$$\Vert \eta_n \Vert _{L^1(\mathbb{R})} \leq c_n \Vert V \Vert _{S^n}^n, $$

for some constant c n depending only on n∈ℕ. Our results for η n rely on estimates for multiple operator integrals obtained in this paper. Our method also applies to the general semi-finite von Neumann algebra setting of the perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Understood as \(\lim_{N\rightarrow\infty} \sum_{|l_{j}|\leq N,\; 0\leq j\leq n}\phi \bigl( \frac{l_{0}}{m}, \ldots, \frac{l_{n}}{m} \bigr) \, E_{l_{0}, m} x_{1} E_{l_{1}, m} x_{2} \cdots x_{n} E_{l_{n}, m}\).

  2. Note that we do not imply boundedness of \(T_{\phi^{*}}\) from that of T ϕ . This is due to the fact that strong operator topology is not well compatible with duality, i.e., there is an example of a sequence of operators converging strongly such that the sequence of dual operators does not converge.

  3. An element xM is called upper-triangular with respect to a family of pairwise orthogonal projections {E l } l∈ℤ if and only if E l xE m =0 for every l>m; it is called lower-triangular if and only if x is upper-triangular.

  4. Note that θ approaches 0 as α runs to ∞; note also that \(\Vert T_{f^{[1]}} \Vert _{2} \leq 1\).

References

  1. Azamov, N.A., Dodds, P.G., Sukochev, F.A.: The Krein spectral shift function in semifinite von Neumann algebras. Integral Equ. Oper. Theory 55, 347–362 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azamov, N.A., Carey, A.L., Sukochev, F.A.: The spectral shift function and spectral flow. Commun. Math. Phys. 276(1), 51–91 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Azamov, N.A., Carey, A.L., Dodds, P.G., Sukochev, F.A.: Operator integrals, spectral shift, and spectral flow. Can. J. Math. 61(2), 241–263 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Grundlehren der Mathematischen Wissenschaften, vol. 223. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  5. Birman, M.Sh., Krein, M.G.: On the theory of wave operators and scattering operators. Dokl. Akad. Nauk SSSR 144, 475–478 (1962). English transl. in Soviet Math. Dokl. 3, 740–744 (1962)

    MathSciNet  Google Scholar 

  6. Birman, M.Sh., Solomyak, M.Z.: Remarks on the spectral shift function. Zap. Nauč. Semin. POMI 27, 33–46 (1972). English transl. in J. Soviet Math. 3(4), 408–419 (1975)

    MATH  Google Scholar 

  7. Birman, M.Sh., Yafaev, D.R.: The spectral shift function. The work of M. G. Krein and its further development. Algebra Anal. 4(5), 1–44 (1992). English transl. in St. Petersburg Math. J. 4, 833–870 (1993)

    MathSciNet  Google Scholar 

  8. Carey, R.W., Pincus, J.D.: Mosaics, principal functions, and mean motion in von Neumann algebras. Acta Math. 138(3–4), 153–218 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chilin, V.I., Sukochev, F.A.: Weak convergence in non-commutative symmetric spaces. J. Oper. Theory 31(1), 35–65 (1994)

    MathSciNet  MATH  Google Scholar 

  10. de Pagter, B., Sukochev, F.A., Witvliet, H.: Double operator integrals. J. Funct. Anal. 192, 52–111 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Grundlehren der Mathematischen Wissenschaften, vol. 303. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  12. Dodds, P.G., Dodds, T.K., de Pagter, B.: Fully symmetric operator spaces. Integral Equ. Oper. Theory 15(6), 942–972 (1992)

    Article  MATH  Google Scholar 

  13. Dodds, P.G., Dodds, T.K., de Pagter, B., Sukochev, F.A.: Lipschitz continuity of the absolute value and Riesz projections in symmetric operator spaces. J. Funct. Anal. 148(1), 28–69 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dykema, K., Skripka, A.: Higher order spectral shift. J. Funct. Anal. 257, 1092–1132 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Farvorovskaya, Y.B.: An estimate of the nearness of the spectral decompositions of self-adjoint operators in the Kantorovič-Rubinštein metric. Vestn. Leningr. Univ. 22(19), 155–156 (1967)

    Google Scholar 

  16. Farvorovskaya, Y.B.: The connection of the Kantorovič-Rubinštein metric for spectral resolutions of self-adjoint operators with functions of operators. Vestn. Leningr. Univ. 23(19), 94–97 (1968)

    Google Scholar 

  17. Farvorovskaya, Y.B.: An example of a Lipschitz function of self-adjoint operators with non-nuclear difference under a nuclear perturbation. Zap. Nauč. Semin. POMI 30, 146–153 (1972)

    Google Scholar 

  18. Gesztesy, F., Pushnitski, A., Simon, B.: On the Koplienko spectral shift function, I. Basics. Zh. Mat. Fiz. Anal. Geom. 4(1), 63–107 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Krein, M.G.: On a trace formula in perturbation theory. Mat. Sb. 33, 597–626 (1953) (Russian)

    MathSciNet  Google Scholar 

  20. Koplienko, L.S.: Trace formula for perturbations of nonnuclear type. Sib. Mat. Zh. 25, 62–71 (1984) (Russian). English transl. in Siberian Math. J. 25, 735–743 (1984)

    MathSciNet  Google Scholar 

  21. Lifshits, I.M.: On a problem of the theory of perturbations connected with quantum statistics. Usp. Mat. Nauk 7, 171–180 (1952). (Russian)

    MATH  Google Scholar 

  22. Peller, V.V.: An extension of the Koplienko-Neidhardt trace formulae. J. Funct. Anal. 221, 456–481 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Peller, V.V.: Multiple operator integrals and higher operator derivatives. J. Funct. Anal. 223, 515–544 (2006)

    Article  MathSciNet  Google Scholar 

  24. Pisier, G., Xu, Q.: Non-commutative L p-spaces. In: Handbook of the Geometry of Banach Spaces, vol. 2, pp. 1459–1517. North-Holland, Amsterdam (2003)

    Chapter  Google Scholar 

  25. Potapov, D., Sukochev, F.: Unbounded Fredholm modules and double operator integrals. J. Reine Angew. Math. 626, 159–185 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Potapov, D., Sukochev, F.: Operator-Lipschitz functions in Schatten-von Neumann classes. Acta Math. 207, 375–389 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schwartz, J.T.: Nonlinear Functional Analysis. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  28. Skripka, A.: Higher order spectral shift, II. Unbounded case. Indiana Univ. Math. J. 59(2), 691–706 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Skripka, A.: Multiple operator integrals and spectral shift. Ill. J. Math. (to appear). arXiv:0907.0432

Download references

Acknowledgements

We are thankful to the referees for useful comments which improved the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Skripka.

Additional information

D. Potapov’s and F. Sukochev’s research is supported in part by ARC.

A. Skripka’s research is supported in part by NSF grant DMS-0900870 and by AWM-NSF Mentoring Travel Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potapov, D., Skripka, A. & Sukochev, F. Spectral shift function of higher order. Invent. math. 193, 501–538 (2013). https://doi.org/10.1007/s00222-012-0431-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-012-0431-2

Mathematics Subject Classification (2000)

Navigation