Skip to main content
Log in

Derived Azumaya algebras and generators for twisted derived categories

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We introduce a notion of derived Azumaya algebras over ring and schemes generalizing the notion of Azumaya algebras of Grothendieck (Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses. Dix Exposés sur la Cohomologie des Schémas, pp. 46–66, North-Holland, Amsterdam, 1968). We prove that any such algebra B on a scheme X provides a class ϕ(B) in \(H^{1}_{et}(X,\mathbb{Z})\times H^{2}_{et}(X,\mathbb{G}_{m})\). We prove that for X a quasi-compact and quasi-separated scheme ϕ defines a bijective correspondence, and in particular that any class in \(H^{2}_{et}(X,\mathbb{G}_{m})\), torsion or not, can be represented by a derived Azumaya algebra on X. Our result is a consequence of a more general theorem about the existence of compact generators in twisted derived categories, with coefficients in any local system of reasonable dg-categories, generalizing the well known existence of compact generators in derived categories of quasi-coherent sheaves of Bondal and Van Den Bergh (Mosc. Math. J. 3(1):1–36, 2003). A huge part of this paper concerns the treatment of twisted derived categories, as well as the proof that the existence of compact generator locally for the fppf topology implies the existence of a global compact generator. We present explicit examples of derived Azumaya algebras that are not represented by classical Azumaya algebras, as well as applications of our main result to the localization for twisted algebraic K-theory and to the stability of saturated dg-categories by direct push-forwards along smooth and proper maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Baker, A., Richter, B., Szymik, M.: Brauer groups for commutative S-algebras. Preprint arXiv:1005.5370

  2. Bergner, J.: Three models for the homotopy theory of homotopy theories. Topology 46(4), 397–436 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bondal, A., Van Den Bergh, M.: Generators and representability of functors in commutative and non-commutative geometry. Mosc. Math. J. 3(1), 1–36 (2003)

    MathSciNet  MATH  Google Scholar 

  4. de Jong, A.: A result of Gabber. Preprint available at http://www.math.columbia.edu/~dejong/

  5. Edidin, D., Hassett, B., Kresch, A., Vistoli, A.: Brauer groups and quotient stacks. Am. J. Math. 123(4), 761–777 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gabber, O.: Some theorems on Azumaya algebras. In: The Brauer Group. Lecture Notes in Math., vol. 844, pp. 129–209. Springer, Berlin (1981)

    Chapter  Google Scholar 

  7. Grothendieck, A.: Le groupe de Brauer. I. Algèbres d’Azumaya et interprétations diverses. In: Dix Exposés sur la Cohomologie des Schémas, pp. 46–66. North-Holland, Amsterdam (1968)

    Google Scholar 

  8. Heinloth, J., Schröer, S.: The bigger Brauer group and twisted sheaves. J. Algebra 322(4), 1187–1195 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Johnson, N.: Azumaya objects in bicategories. Preprint arxiv:1005.4878

  10. Lieblich, M.: Moduli of twisted sheaves and generalized Azumaya algebras. Oberwolfach Rep. 1(3) (2004)

  11. Lurie, J.: Higher Topos Theory. Annals of Mathematics Studies, vol. 170, pp. xviii+925. Princeton University Press, Princeton (2009).

    MATH  Google Scholar 

  12. Lurie, J.: On the Classification of Topological Field Theories. Current Developments in Mathematics, vol. 2008, pp. 129–280. Int. Press, Somerville (2009)

    Google Scholar 

  13. Lurie, J.: Derived algebraic geometry XII: proper morphisms, completions, and the Grothendieck existence theorem. Preprint available at http://www.math.harvard.edu/~lurie/

  14. Lurie, J.: Quasi-coherent sheaves and Tannaka duality theorems. Preprint available at http://www.math.harvard.edu/~lurie/

  15. Neeman, A.: Triangulated Categories. Annals of Mathematics Studies, vol. 148, pp. viii+449. Princeton University Press, Princeton (2001).

    MATH  Google Scholar 

  16. Pridham, J.: Presenting higher stacks as simplicial schemes. arXiv:0905.4044

  17. Rezk, C.: Fibrations and homotopy colimits of simplicial sheaves. Preprint available at http://www.math.uiuc.edu/~rezk/papers.html

  18. Schlichting, M.: Negative KK-theory of derived categories. Math. Z. 253(1), 97–134 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schwede, S., Shipley, B.: Algebras and modules in monoïdal model categories. Proc. Lond. Math. Soc. (3) 80(2), 491–511 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schwede, S., Shipley, B.: Equivalences of monoïdal model categories. Algebr. Geom. Topol. 3, 287–334 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Simpson, C.: Homotopy Theory of Higher Categories: From Segal Categories to n-Categories and Beyond. New Mathematical Monographs, vol. 19. Cambridge University Press, Cambridge (2012).

    Google Scholar 

  22. Tabuada, G.: Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories. C. R. Acad. Sci. Paris 340, 15–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tabuada, G.: Invariants additifs de DG-catégories. Int. Math. Res. Not. 53, 3309–3339 (2005)

    Article  MathSciNet  Google Scholar 

  24. Tabuada, G.: Differential graded versus Simplicial categories. Topol. Appl. 157(3), 563–593 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Thomason, R.W.: The classification of triangulated subcategories. Compos. Math. 105(1), 1–27 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Toën, B.: The homotopy theory of dg-categories and derived Morita theory. Invent. Math. 167(3), 615–667 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Toën, B.: Anneaux de définition des dg-algèbres propres et lisses. Bull. Lond. Math. Soc. 40(4), 642–650 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Toën, B.: Higher and derived stacks: a global overview. In: Algebraic Geometry—Seattle 2005. Proc. Sympos. Pure Math., vol. 80, pp. 435–487. Amer. Math. Soc., Providence (2009), Part 1

    Google Scholar 

  29. Toën, B.: Lectures on dg-categories. In: Topics in Algebraic and Topological K-theory. Lecture Notes in Mathematics, vol. 2008. Springer, Berlin (2011)

    Google Scholar 

  30. Toën, B.: Descente fidèlement plate pour les n-champs d’Artin. Compos. Math. 147(05), 1382–1412 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Toën, B., Vaquié, M.: Moduli of objects in dg-categories, Ann. Sci. ENS 40(3) 387–444

  32. Toën, B., Vezzosi, G.: Homotopical algebraic geometry I: topos theory. Adv. Math. 193(2), 257–372 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Toën, B., Vezzosi, G.: Homotopical algebraic geometry II: geometric stacks and applications. Mem. Amer. Math. Soc. 193(902), x+224 (2008)

    Google Scholar 

  34. Toën, B., Vezzosi, G.: Chern character, loop spaces and derived algebraic geometry. In: Algebraic Topology. Abel Symp., vol. 4, pp. 331–354. Springer, Berlin (2009)

    Chapter  Google Scholar 

  35. Toën, B., Vezzosi, G.: ∞-Catégories monoïdales rigides, traces et caractère de Chern. Preprint arXiv:0903.3292

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertrand Toën.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toën, B. Derived Azumaya algebras and generators for twisted derived categories. Invent. math. 189, 581–652 (2012). https://doi.org/10.1007/s00222-011-0372-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-011-0372-1

Keywords

Navigation