Skip to main content
Log in

Liouville quantum gravity and KPZ

  • Published:
Inventiones mathematicae Aims and scope

Abstract

Consider a bounded planar domain D, an instance h of the Gaussian free field on D, with Dirichlet energy (2π)−1 D h(z)⋅∇h(z)dz, and a constant 0≤γ<2. The Liouville quantum gravity measure on D is the weak limit as ε→0 of the measures

$$\varepsilon^{\gamma^2/2} e^{\gamma h_\varepsilon(z)}dz,$$

where dz is Lebesgue measure on D and h ε (z) denotes the mean value of h on the circle of radius ε centered at z. Given a random (or deterministic) subset X of D one can define the scaling dimension of X using either Lebesgue measure or this random measure. We derive a general quadratic relation between these two dimensions, which we view as a probabilistic formulation of the Knizhnik, Polyakov, Zamolodchikov (Mod. Phys. Lett. A, 3:819–826, 1988) relation from conformal field theory. We also present a boundary analog of KPZ (for subsets of ∂D). We discuss the connection between discrete and continuum quantum gravity and provide a framework for understanding Euclidean scaling exponents via quantum gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ambjørn, J., Anagnostopoulos, K.N., Magnea, U., Thorleifsson, G.: Geometrical interpretation of the Knizhnik-Polyakov-Zamolodchikov exponents. Phys. Lett. B 388, 713–719 (1996). arXiv:hep-lat/9606012

    Article  MathSciNet  Google Scholar 

  2. Alvarez-Gaumé, L., Barbón, J.L.F., Crnković, Č.: A proposal for strings at D>1. Nucl. Phys. B 394, 383–422 (1993). arXiv:hep-th/9208026

    Article  Google Scholar 

  3. Anagnostopoulos, K., Bialas, P., Thorleifsson, G.: The Ising model on a quenched ensemble of c=−5 gravity graphs. J. Stat. Phys. 94, 321–345 (1999). arXiv:cond-mat/9804137

    Article  MATH  Google Scholar 

  4. Aizenman, M., Duplantier, B., Aharony, A.: Path-crossing exponents and the external perimeter in 2D percolation. Phys. Rev. Lett. 83, 1359–1362 (1999). arXiv:cond-mat/9901018

    Article  Google Scholar 

  5. Ambjørn, J., Durhuus, B., Fröhlich, J.: Diseases of triangulated random surface models, and possible cures. Nucl. Phys. B 257, 433–449 (1985)

    Article  Google Scholar 

  6. Ambjørn, J., Durhuus, B., Jonsson, T.: A solvable 2d gravity model with γ>0. Mod. Phys. Lett. A 9, 1221–1228 (1994)

    Article  Google Scholar 

  7. Ambjørn, J., Durhuus, B., Jonsson, T.: Quantum Geometry, a Statistical Field Theory Approach. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  8. Albeverio, S., Gallavotti, G., Høegh-Krohn, R.: Some results for the exponential interaction in two or more dimensions. Commun. Math. Phys. 70(2), 187–192 (1979)

    Article  MATH  Google Scholar 

  9. Albeverio, S., Høegh-Krohn, R.: The Wightman axioms and the mass gap for strong interactions of exponential type in two-dimensional space-time. J. Funct. Anal. 16, 39–82 (1974)

    Article  MATH  Google Scholar 

  10. Albeverio, S., Høegh-Krohn, R., Paycha, S., Scarlatti, S.: A global and stochastic analysis approach to bosonic strings and associated quantum fields. Acta Appl. Math. 26(2), 103–195 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ambjørn, J., Jurkiewicz, J., Watabiki, Y.: On the fractal structure of two-dimensional quantum gravity. Nucl. Phys. B 454(1–2), 313–342 (1995). arXiv:hep-lat/9507014

    Article  Google Scholar 

  12. Angel, O., Schramm, O.: Uniform infinite planar triangulations. Commun. Math. Phys. 241(2–3), 191–213 (2003). arXiv:math/0207153

    MATH  MathSciNet  Google Scholar 

  13. Ambjørn, J., Watabiki, Y.: Scaling in quantum gravity. Nucl. Phys. B 445(1), 129–142 (1995). arXiv:hep-th/9501049

    Article  Google Scholar 

  14. Bauer, M.: Aspects de l’invariance conforme. Ph.D. Thesis, Université Paris 7 (1990)

  15. Bernardi, O., Bousquet-Mélou, M.: Counting colored planar maps: algebraicity results (2009). arXiv:0909.1695

  16. Bouttier, J., Di Francesco, P., Guitter, E.: Census of planar maps: from the one-matrix model solution to a combinatorial proof. Nucl. Phys. B 645(3), 477–499 (2002)

    Article  MATH  Google Scholar 

  17. Bouttier, J., Di Francesco, P., Guitter, E.: Combinatorics of hard particles on planar graphs. Nucl. Phys. B 655(3), 313–341 (2003)

    Article  MATH  Google Scholar 

  18. Bouttier, J., Di Francesco, P., Guitter, E.: Geodesic distance in planar graphs. Nucl. Phys. B 663(3), 535–567 (2003)

    Article  MATH  Google Scholar 

  19. Bouttier, J., Di Francesco, P., Guitter, E.: Blocked edges on Eulerian maps and mobiles: application to spanning trees, hard particles and the Ising model. J. Phys. A Math. Theor. 40(27), 7411–7440 (2007)

    Article  MATH  Google Scholar 

  20. Barbón, J.L.F., Demeterfi, K., Klebanov, I.R., Schmidhuber, C.: Correlation functions in matrix models modified by wormhole terms. Nucl. Phys. B 440, 189–214 (1995). arXiv:hep-th/9501058

    Article  MATH  Google Scholar 

  21. Bernardi, O.: Bijective counting of tree-rooted maps and shuffles of parenthesis systems. Electron. J. Comb. 14(1), #R9 (2007). arXiv:math/0601684

    MathSciNet  Google Scholar 

  22. Bernardi, O.: A characterization of the Tutte polynomial via combinatorial embeddings. Ann. Comb. 12(2), 139–153 (2008). arXiv:math/0608057

    Article  MATH  MathSciNet  Google Scholar 

  23. Bernardi, O.: On triangulations with high vertex degree. Ann. Comb. 12(1), 17–44 (2008). arXiv:math/0601678

    Article  MATH  MathSciNet  Google Scholar 

  24. Bernardi, O.: Tutte polynomial, subgraphs, orientations and sandpile model: new connections via embeddings. Electron. J. Comb. 15(1), #R109 (2008). arXiv:math/0612003

    MathSciNet  Google Scholar 

  25. Banderier, C., Flajolet, P., Schaeffer, G., Soria, M.: Random maps, coalescing saddles, singularity analysis, and Airy phenomena. Random Struct. Algorithms 19(3) (2001)

  26. Bouttier, J., Guitter, E.: Statistics of geodesics in large quadrangulations. J. Phys. A Math. Theor. 41, 145001 (2008). arXiv:0712.2160

    Article  MathSciNet  Google Scholar 

  27. Bouttier, J., Guitter, E.: The three-point function of planar quadrangulations. J. Stat. Mech. 7, P07020 (2008). arXiv:0805.2355

    Article  MathSciNet  Google Scholar 

  28. Bouttier, J., Guitter, E.: Confluence of geodesic paths and separating loops in large planar quadrangulations. J. Stat. Mech., P03001 (2009). arXiv:0811.0509

  29. Brézin, E., Itzykson, C., Parisi, G., Zuber, J.B.: Planar diagrams. Commun. Math. Phys. 59, 35–51 (1978)

    Article  MATH  Google Scholar 

  30. Boulatov, D.V., Kazakov, V.A., Kostov, I.K., Migdal, A.A.: Analytical and numerical study of a model of dynamically triangulated random surfaces. Nucl. Phys. B 275, 641–686 (1986)

    Article  MathSciNet  Google Scholar 

  31. Boulatov, D.V., Kazakov, V.A., Kostov, I.K., Migdal, A.A.: Possible types of critical behaviour and the mean size of dynamically triangulated random surfaces. Phys. Lett. B 174, 87–93 (1986)

    Article  MathSciNet  Google Scholar 

  32. Borodin, A.N., Salminen, P.: Handbook of Brownian Motion, p. 295, 2nd edn. Birkhäuser, Basel (2000). formulae 2.0.1–2.0.2

    Google Scholar 

  33. Bousquet-Mélou, M., Schaeffer, G.: The degree distribution in bipartite planar maps: applications to the Ising model. In: Eriksson, K., Linusson, S. (eds.) Proceedings of FPSAC 03 (Formal Power Series and Algebraic Combinatorics), Vadstena, Sweden, June 2003, pp. 312–323 (2003). arXiv:math/0211070

    Google Scholar 

  34. Benjamini, I., Schramm, O.: KPZ in one dimensional random geometry of multiplicative cascades. Commun. Math. Phys 289, 46–56 (2009). arXiv:0806.1347

    Article  MathSciNet  Google Scholar 

  35. Chapuy, G.: Asymptotic enumeration of constellations and related families of maps on orientable surfaces. Comb. Probab. Comput. 18(4), 477–516 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Chapuy, G.: The structure of unicellular maps, and a connection between maps of positive genus and planar labelled trees. Probab. Theory Relat. Fields 147(3), 415–447 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Chern, S.: An elementary proof of the existence of isothermal parameters on a surface. Proc. Am. Math. Soc. 6, 771–782 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  38. Chapuy, G., Marcus, M., Schaeffer, G.: A bijection for rooted maps on orientable surfaces. SIAM J. Discrete Math. 23(3), 1587–1611 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Daul, J.-M.: Q-States Potts model on a random planar lattice (1995). arXiv:hep-th/9502014. Unpublished

  40. David, F.: Randomly triangulated surfaces in −2 dimensions. Phys. Lett. B 159, 303–306 (1985)

    Article  MathSciNet  Google Scholar 

  41. David, F.: Conformal field theories coupled to 2-D gravity in the conformal gauge. Mod. Phys. Lett. A 3(17), 1651–1656 (1988)

    Article  Google Scholar 

  42. David, F.: Random matrices and two-dimensional gravity. In: Fundamental Problems in Statistical Mechanics, VIII (Altenberg, 1993), pp. 105–126. North-Holland, Amsterdam (1994)

    Google Scholar 

  43. David, F.: Simplicial quantum gravity and random lattices. In: Julia, B., Zinn-Justin, J. (eds.) Gravitation et quantifications (Les Houches, Session LVII, 1992), pp. 679–749. Elsevier B.V., Amsterdam (1995)

    Google Scholar 

  44. Duplantier, B., Binder, I.A.: Harmonic measure and winding of conformally invariant curves. Phys. Rev. Lett. 89, 264101 (2002). arXiv:cond-mat/0208045

    Article  Google Scholar 

  45. David, F., Bauer, M.: Another derivation of the geometrical KPZ relations. J. Stat. Mech. 3, P03004 (2009). arXiv:0810.2858

    Article  MathSciNet  Google Scholar 

  46. Das, S.R., Dhar, A., Sengupta, A.M., Wadia, S.R.: New critical behavior in d=0 large-N matrix models. Mod. Phys. Lett. A 5, 1041–1056 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  47. Di Francesco, P., Guitter, E.: Geometrically constrained statistical systems on regular and random lattices: from folding to meanders. Phys. Rep. 415(1), 1–88 (2005)

    Article  MathSciNet  Google Scholar 

  48. Di Francesco, P., Golinelli, O., Guitter, E.: Meanders: exact asymptotics. Nucl. Phys. B 570(3), 699–712 (2000)

    Article  MATH  Google Scholar 

  49. Di Francesco, P., Ginsparg, P., Zinn-Justin, J.: 2D gravity and random matrices. Phys. Rep. 254, 1–133 (1995)

    Article  Google Scholar 

  50. Duplantier, B., Kostov, I.K.: Conformal spectra of polymers on a random surface. Phys. Rev. Lett. 61, 1433–1437 (1988)

    Article  MathSciNet  Google Scholar 

  51. Duplantier, B., Kwon, K.-H.: Conformal invariance and intersection of random walks. Phys. Rev. Lett. 61, 2514–2517 (1988)

    Article  Google Scholar 

  52. Distler, J., Kawai, H.: Conformal field theory and 2D quantum gravity. Nucl. Phys. B 321, 509–527 (1989)

    Article  MathSciNet  Google Scholar 

  53. Duplantier, B., Kostov, I.K.: Geometrical critical phenomena on a random surface of arbitrary genus. Nucl. Phys. B 340, 491–541 (1990)

    Article  MathSciNet  Google Scholar 

  54. Dai, J., Luo, W., Jin, M., Zeng, W., He, Y., Yau, S.-T., Gu, X.: Geometric accuracy analysis for discrete surface approximation. Comput. Aided Geom. Des. 24(6), 323–338 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  55. Dorn, H., Otto, H.-J.: Two- and three-point functions in Liouville theory. Nucl. Phys. B 429, 375–388 (1994). arXiv:hep-th/9403141

    Article  MATH  MathSciNet  Google Scholar 

  56. Duplantier, B., Sheffield, S.: Schramm-Loewner evolution and Liouville quantum gravity (in preparation)

  57. Duplantier, B., Sheffield, S.: Duality and KPZ in Liouville quantum gravity. Phys. Rev. Lett. 102, 150603 (2009). arXiv:0901.0277

    Article  MathSciNet  Google Scholar 

  58. Duplantier, B.: Random walks and quantum gravity in two dimensions. Phys. Rev. Lett. 81, 5489–5492 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  59. Duplantier, B.: Harmonic measure exponents for two-dimensional percolation. Phys. Rev. Lett. 82, 3940–3943 (1999). arXiv:cond-mat/9901008

    Article  MATH  MathSciNet  Google Scholar 

  60. Duplantier, B.: Random walks, polymers, percolation, and quantum gravity in two dimensions. Physica A 263(1–4), 452–465 (1999). STATPHYS 20 (Paris, 1998)

    Article  MathSciNet  Google Scholar 

  61. Duplantier, B.: Two-dimensional copolymers and exact conformal multifractality. Phys. Rev. Lett. 82, 880–883 (1999). arXiv:cond-mat/9812439

    Article  MathSciNet  Google Scholar 

  62. Duplantier, B.: Conformally invariant fractals and potential theory. Phys. Rev. Lett. 84, 1363–1367 (2000). arXiv:cond-mat/9908314

    Article  MATH  MathSciNet  Google Scholar 

  63. Duplantier, B.: Conformal fractal geometry & boundary quantum gravity. In: Fractal Geometry and Applications: a Jubilee of Benoît Mandelbrot, Part 2. Proc. Sympos. Pure Math., vol. 72, pp. 365–482. Am. Math. Soc., Providence (2004). arXiv:math-ph/0303034

    Google Scholar 

  64. Duplantier, B.: Conformal random geometry. In: Bovier, A., Dunlop, F., den Hollander, F., van Enter, A., Dalibard, J. (eds.) Mathematical Statistical Physics, Les Houches Summer School, Session LXXXIII, 2005, pp. 101–217. Elsevier B.V., Amsterdam (2006). arXiv:math-ph/0608053

    Google Scholar 

  65. Durhuus, B.: Multi-spin systems on a randomly triangulated surface. Nucl. Phys. B 426, 203–222 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  66. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1997)

    Google Scholar 

  67. Eynard, B., Bonnet, G.: The Potts-Q random matrix model: loop equations, critical exponents, and rational case. Phys. Lett. B 463, 273–279 (1999). arXiv:hep-th/9906130

    Article  MATH  MathSciNet  Google Scholar 

  68. Eynard, B., Kristjansen, C.: Exact solution of the O(n) model on a random lattice. Nucl. Phys. B 455, 577–618 (1995). arXiv:hep-th/9506193

    Article  MATH  MathSciNet  Google Scholar 

  69. Eynard, B., Orantin, N.: Invariants of algebraic curves and topological expansion. Commun. Number Theory Phys. 1(2), 347–452 (2007)

    MATH  MathSciNet  Google Scholar 

  70. Eynard, B., Orantin, N.: Topological expansion and boundary conditions. J. High Energy Phys. 6, 37 (2008). arXiv:0710.0223

    Article  MathSciNet  Google Scholar 

  71. Eynard, B.: Random matrices. Saclay Lectures in Theoretical Physics (2001). http://ipht.cea.fr/Docspht//search/article.php?IDA=257, unpublished

  72. Eynard, B.: Large N expansion of convergent matrix integrals, holomorphic anomalies, and background independence. J. High Energy Phys. 3, 3 (2009). arXiv:0802.1788

    Article  MathSciNet  Google Scholar 

  73. Eynard, B., Zinn-Justin, J.: The O(n) model on a random surface: critical points and large-order behaviour. Nucl. Phys. B 386, 558–591 (1992). arXiv:hep-th/9204082

    Article  MathSciNet  Google Scholar 

  74. Farkas, H.M., Kra, I.: Riemann Surfaces, 2nd edn. Graduate Texts in Mathematics, vol. 71. Springer, New York (1992)

    Book  MATH  Google Scholar 

  75. Flajolet, P., Salvy, B., Schaeffer, G.: Airy phenomena and analytic combinatorics of connected graphs. Electron. J. Comb. 11(1), #R34,1–30 (2004)

    MathSciNet  Google Scholar 

  76. Fateev, V., Zamolodchikov, A.B., Zamolodchikov, Al.B.: Boundary Liouville field theory I. Boundary state and boundary two-point function (2000). arXiv:hep-th/0001012. Unpublished

  77. Gaudin, M., Kostov, I.K.: O(n) model on a fluctuating planar lattice. Some exact results. Phys. Lett. B 220, 200–206 (1989)

    Article  MathSciNet  Google Scholar 

  78. Goulian, M., Li, M.: Correlation functions in Liouville theory. Phys. Rev. Lett. 66, 2051–2055 (1991)

    Article  Google Scholar 

  79. Ginsparg, P., Moore, G.: Lectures on 2d gravity and 2d string theory (TASI 1992). In: Harvey, J., Polchinski, J. (eds.) Recent Direction in Particle Theory, Proceedings of the 1992 TASI. World Scientific, Singapore (1993)

    Google Scholar 

  80. Gu, X., Wang, Y., Yau, S.-T.: Geometric compression using Riemann surface structure. Commun. Inf. Syst. 3(3), 171–182 (2004)

    MathSciNet  Google Scholar 

  81. Gu, X., Yau, S.-T.: Computing conformal structures of surfaces. Commun. Inf. Syst. 2(2), 121–145 (2002)

    MATH  MathSciNet  Google Scholar 

  82. Høegh-Krohn, R.: A general class of quantum fields without cut-offs in two space-time dimensions. Commun. Math. Phys. 21, 244–255 (1971)

    Article  Google Scholar 

  83. Hu, X., Miller, J., Peres, Y.: Thick points of the Gaussian free field. Ann. Probab. 38(2), 896–926 (2010). arXiv:0902.3842

    Article  MATH  MathSciNet  Google Scholar 

  84. Hosomichi, K.: Bulk-boundary propagator in Liouville theory on a disc. J. High Energy Phys. 11, 44 (2001). arXiv:hep-th/0108093

    Article  MathSciNet  Google Scholar 

  85. Janke, W., Johnston, D.A.: The wrong kind of gravity. Phys. Lett. B 460, 271–275 (1999)

    Article  Google Scholar 

  86. Jain, S., Mathur, S.D.: World-sheet geometry and baby universes in 2D quantum gravity. Phys. Lett. B 286, 239–246 (1992)

    Article  MathSciNet  Google Scholar 

  87. Jin, M., Wang, Y., Gu, X., Yau, S.-T.: Optimal global conformal surface parameterization for visualization. Commun. Inf. Syst. 4(2), 117–134 (2005)

    MathSciNet  Google Scholar 

  88. Kazakov, V.A.: Ising model on a dynamical planar random lattice: Exact solution. Phys. Lett. A 119, 140–144 (1986)

    Article  MathSciNet  Google Scholar 

  89. Klebanov, I.R., Hashimoto, A.: Non-perturbative solution of matrix models modified by trace-squared terms. Nucl. Phys. B 434, 264–282 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  90. Klebanov, I.R., Hashimoto, A.: Wormholes, matrix models, and Liouville gravity. Nucl. Phys. B Proc. Suppl. 45, 135–148 (1996)

    Article  MathSciNet  Google Scholar 

  91. Kazakov, V.A., Kostov, I.K.: Loop gas model for open strings. Nucl. Phys. B 386, 520–557 (1992)

    Article  MathSciNet  Google Scholar 

  92. Kazakov, V.A., Kostov, I.K., Migdal, A.A.: Critical properties of randomly triangulated planar random surfaces. Phys. Lett. B 157, 295–300 (1985)

    Article  MathSciNet  Google Scholar 

  93. Klebanov, I.R.: Touching random surfaces and Liouville gravity. Phys. Rev. D 51, 1836–1841 (1995)

    Article  MathSciNet  Google Scholar 

  94. Korchemsky, G.P.: Loops in the curvature matrix model. Phys. Lett. B 296, 323–334 (1992)

    Article  MathSciNet  Google Scholar 

  95. Korchemsky, G.P.: Matrix model perturbed by higher order curvature terms. Mod. Phys. Lett. A 7, 3081–3100 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  96. Kostov, I.K.: O(n) vector model on a planar random lattice: Spectrum of anomalous dimensions. Mod. Phys. Lett. A 4, 217–226 (1989)

    Article  MathSciNet  Google Scholar 

  97. Kostov, I.K.: The ADE face models on a fluctuating planar lattice. Nucl. Phys. B 326, 583–612 (1989)

    Article  MathSciNet  Google Scholar 

  98. Kostov, I.K.: Exact solution of the six-vertex model on a random lattice. Nucl. Phys. B 575(3), 513–534 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  99. Kostov, I.K.: Boundary correlators in 2D quantum gravity: Liouville versus discrete approach. Nucl. Phys. B 658, 397–416 (2003). arXiv:hep-th/0212194

    Article  MATH  MathSciNet  Google Scholar 

  100. Kostov, I.K.: Boundary loop models and 2D quantum gravity. J. Stat. Mech. 08, P08023 (2007). arXiv:hep-th/0703221

    Article  MathSciNet  Google Scholar 

  101. Kostov, I.K.: Boundary O(n) models and 2D quantum gravity. In: Ouvry, S., Jacobsen, J., Pasquier, V., Serban, D., Cugliandolo, L. (eds.) Exact Methods in Low-Dimensional Statistical Physics and Quantum Theory, Les Houches Summer School, Session LXXXIX, 2008. Oxford University Press, London (2009)

    Google Scholar 

  102. Kostov, I.K., Ponsot, B., Serban, D.: Boundary Liouville theory and 2D quantum gravity. Nucl. Phys. B 683, 309–362 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  103. Knizhnik, V.G., Polyakov, A.M., Zamolodchikov, A.B.: Fractal structure of 2D-quantum gravity. Mod. Phys. Lett. A 3, 819–826 (1988)

    Article  MathSciNet  Google Scholar 

  104. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Graduate Texts in Mathematics, vol. 113. Springer, New York (1991)

    Book  MATH  Google Scholar 

  105. Kazakov, V.A., Zinn-Justin, P.: Two-matrix model with ABAB interaction. Nucl. Phys. B 546(3), 647–668 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  106. Le Gall, J.-F.: The topological structure of scaling limits of large planar maps. Invent. Math. 169, 621–670 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  107. Le Gall, J.-F.: Geodesics in large planar maps and the Brownian map (2008). arXiv:0804.3012 [math.PR]. To appear in Acta Math. doi:10.1007/s11511-010-0056-5

  108. Le Gall, J.-F., Miermont, G.: Scaling limits of random planar maps with large faces (2009). arXiv:0907.3262. To appear in Ann. Probab.

  109. Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents. I. Half-plane exponents. Acta Math. 187(2), 237–273 (2001). arXiv:math.PR/9911084

    Article  MATH  MathSciNet  Google Scholar 

  110. Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents. II. Plane exponents. Acta Math. 187(2), 275–308 (2001). arXiv:math.PR/0003156

    Article  MATH  MathSciNet  Google Scholar 

  111. Lawler, G.F., Schramm, O., Werner, W.: Values of Brownian intersection exponents. III. Two-sided exponents. Ann. Inst. Henri Poincaré Probab. Stat. 38(1), 109–123 (2002). arXiv:math.PR/0005294

    Article  MATH  MathSciNet  Google Scholar 

  112. Lawler, G.F., Werner, W.: Intersection exponents for planar Brownian motion. Ann. Probab. 27(4), 1601–1642 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  113. Miermont, G.: On the sphericity of scaling limits of random planar quadrangulations. Electron. Commun. Probab. 13, 248–257 (2008)

    MATH  MathSciNet  Google Scholar 

  114. Miermont, G.: Tessellations of random maps of arbitrary genus. Ann. Sci. Éc. Norm. Supér. (4) 42(5), 725–781 (2009)

    MATH  MathSciNet  Google Scholar 

  115. Marckert, J.-F., Miermont, G.: Invariance principles for random bipartite planar maps. Ann. Probab. 35(5), 1642–1705 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  116. Moore, G., Seiberg, N., Staudacher, M.: From loops to states in two-dimensional quantum gravity. Nucl. Phys. B 362, 665–709 (1991)

    Article  MathSciNet  Google Scholar 

  117. Miermont, G., Weill, M.: Radius and profile of random planar maps with faces of arbitrary degrees. Electron. J. Probab. 13(4), 79–106 (2008)

    MATH  MathSciNet  Google Scholar 

  118. Nakayama, Y.: Liouville field theory. Int. J. Mod. Phys. A 19, 2771–2930 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  119. Peres, Y., Mörters, P.: Brownian motion. Unpublished draft (2006). http://www.stat.berkeley.edu/~peres/bmbook.pdf

  120. Polyakov, A.M.: From quarks to strings. In: Cappelli, A., Castellani, E., Colomo, F., Di Vecchia, P. (eds.) The Birth of String Theory. Cambridge University Press, Cambridge (to appear November 2011). arXiv:0812.0183

  121. Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Lett. B 103(3), 207–210 (1981)

    Article  MathSciNet  Google Scholar 

  122. Polyakov, A.M.: Quantum geometry of fermionic strings. Phys. Lett. B 103(3), 211–213 (1981)

    Article  MathSciNet  Google Scholar 

  123. Polyakov, A.M.: Gauge Fields and Strings. Harwood Academic Publishers, Chur (1987)

    Google Scholar 

  124. Polyakov, A.M.: Quantum gravity in two-dimensions. Mod. Phys. Lett. A 2, 893 (1987)

    Article  MathSciNet  Google Scholar 

  125. Polyakov, A.M.: Two-dimensional quantum gravity. Superconductivity at high T C . In: Fields, Strings and Critical Phenomena, Les Houches, Session XLIX, 1988, pp. 305–368. North-Holland, Amsterdam (1989)

    Google Scholar 

  126. Ponsot, B., Teschner, J.: Boundary Liouville field theory: boundary three-point function. Nucl. Phys. B 622, 309–327 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  127. Rhodes, R., Vargas, V.: KPZ formula for log-infinitely divisible multifractal random measures (2008). arXiv:0807.1036 [math.PR]. To appear in ESAIM P&S. doi:10.1051/ps/2010007

  128. Schaeffer, G.: Conjugaison d’arbres et cartes combinatoires aléatoires. Ph.D. Thesis, Univ. Bordeaux I, Talence (1998)

  129. Saleur, H., Duplantier, B.: Exact determination of the percolation hull exponent in two dimensions. Phys. Rev. Lett. 58, 2325–2328 (1987)

    Article  MathSciNet  Google Scholar 

  130. Seiberg, N.: Notes on quantum Liouville theory and quantum gravity. Prog. Theor. Phys. Suppl. 102, 319–349 (1990)

    Article  MathSciNet  Google Scholar 

  131. Sheffield, S.: Conformal weldings of random surfaces: SLE and the quantum gravity zipper. arXiv:1012.4797

  132. Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139, 521–541 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  133. Simon, B.: The P(Φ)2 Euclidean (Quantum) Field Theory. Princeton University Press, Princeton (1974)

    Google Scholar 

  134. Smirnov, S., Werner, W.: Critical exponents for two-dimensional percolation. Math. Res. Lett. (2001). arXiv:math.PR/0109120

  135. Takhtajan, L.A.: Liouville Theory: Quantum geometry of Riemann surfaces. Mod. Phys. Lett. A 8, 3529–3535 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  136. Teschner, J.: On the Liouville three-point function. Phys. Lett. B 363, 65–70 (1995). arXiv:hep-th/9507109

    Article  Google Scholar 

  137. Teschner, J.: Liouville theory revisited. Class. Quantum Gravity 18, R153–R222 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  138. Teschner, J.: From Liouville theory to the quantum geometry of Riemann surfaces. In: Prospects in Mathematical Physics. Contemp. Math., vol. 437, pp. 231–246. Am. Math. Soc., Providence (2007)

    Google Scholar 

  139. Takhtajan, L.A., Teo, L.-P.: Quantum Liouville theory in the background field formalism I. Compact Riemann surfaces. Commun. Math. Phys. 268, 135–197 (2006). arXiv:hep-th/0508188

    Article  MATH  MathSciNet  Google Scholar 

  140. Wang, Y., Gu, X., Yau, S.-T.: Surface segmentation using global conformal structure. Commun. Inf. Syst. 4(2), 165–179 (2005)

    MathSciNet  Google Scholar 

  141. Zamolodchikov, Al.B.: Higher equations of motion in Liouville field theory. Int. J. Mod. Phys. A 19, 510–523 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  142. Zamolodchikov, A.B., Zamolodchikov, Al.B.: Structure constants and conformal bootstrap in Liouville field theory. Nucl. Phys. B 477, 577–605 (1996). arXiv:hep-th/9506136

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Sheffield.

Additional information

B. Duplantier was partially supported by grant ANR-08-BLAN-0311-CSD5 and CNRS grant PEPS-PTI 2010.

S. Sheffield was partially supported by NSF grants DMS 0403182 and DMS 064558 and OISE 0730136.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duplantier, B., Sheffield, S. Liouville quantum gravity and KPZ. Invent. math. 185, 333–393 (2011). https://doi.org/10.1007/s00222-010-0308-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-010-0308-1

Keywords

Navigation