Abstract
The K-theory of a polynomial ring R[t] contains the K-theory of R as a summand. For R commutative and containing ℚ, we describe K *(R[t])/K *(R) in terms of Hochschild homology and the cohomology of Kähler differentials for the cdh topology.
We use this to address Bass’ question, whether K n (R)=K n (R[t]) implies K n (R)=K n (R[t 1,t 2]). The answer to this question is affirmative when R is essentially of finite type over the complex numbers, but negative in general.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Artin, M., Grothendieck, A., Verdier, J.L.: Théorie des topos et cohomologie étale des schémas. Tome 2. Springer, Berlin (1972). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J.L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, vol. 270
Grothendieck, A., Dieudonné, J.: Étude cohomologique des faisceaux cohérents, Publ. Math. IHES 11 (1961) (prémière partie)
Bass, H.: Algebraic K-theory. Benjamin, Elmsford (1968)
Bass, H.: Some problems in “classical” algebraic K-theory. In: Algebraic K-theory II. Lecture Notes in Math., vol. 342, pp. 3–73. Springer, Berlin (1973)
Cartier, P.: Groupes formels associés aux anneaux de Witt généralisés. C. R. Acad. Sci. (Paris) 265, 49–52 (1967)
Cortiñas, G., Guccione, J.A., Guccione, J.J.: Decomposition of Hochschild and cyclic homology of commutative differential graded algebras. J. Pure Appl. Algebra 83, 219–235 (1992)
Cortiñas, G., Haesemeyer, C., Schlichting, M., Weibel, C.: Cyclic homology, cdh-cohomology and negative K-theory. Ann. Math. 167(2), 549–573 (2008)
Cortiñas, G., Haesemeyer, C., Walker, M., Weibel, C.: A counterexample to a question of Bass. Preprint (2010)
Cortiñas, G., Haesemeyer, C., Weibel, C.: K-regularity, cdh-fibrant Hochschild homology, and a conjecture of Vorst. J. Am. Math. Soc. 21, 547–561 (2008)
Cortiñas, G., Haesemeyer, C., Weibel, C.: Infinitesimal cohomology and the Chern character to negative cyclic homology. Math. Ann. 344, 891–922 (2009)
Davis, J.: Some remarks on Nil groups in algebraic K-theory. Preprint (2007). Available at http://arxiv.org/abs/0803.1641
Dayton, B., Weibel, C.: Module Structures on the Hochschild and Cyclic Homology of Graded Rings. NATO ASI Ser. C, vol. 407, pp. 63–90. Kluwer Academic, Dordrecht (1993)
Geller, S., Weibel, C.: Hodge decompositions of Loday symbols in K-theory and cyclic homology. K-theory 8, 587–632 (1994)
Goodwillie, T.: Relative algebraic K-theory and cyclic homology. Ann. Math. 124, 347–402 (1986)
Goodwillie, T., Lichtenbaum, S.: A cohomological bound for the h-topology. Am. J. Math. 123, 425–443 (2001)
Gubeladze, J.: On Bass’ question for finitely generated algebras over large fields. Bull. Lond. Math. Soc. 41, 36–40 (2009)
Haesemeyer, C.: Descent properties of homotopy K-theory. Duke Math. J. 125, 589–620 (2004)
Hartshorne, R.: Algebraic Geometry. Springer-Verlag, Berlin (1977)
Loday, J.-L.: Cyclic Homology. Grundlehren der Mathematischen Wissenschaften, vol. 301. Springer, Berlin (1992). Appendix E by M. Ronco
Murthy, M.P., Pedrini, C.: K 0 and K 1 of polynomial rings. In: Lecture Notes in Math., vol. 342, pp. 109–121. Springer-Verlag, Berlin (1973)
Mazza, C., Voevodsky, V., Weibel, C.: Lecture Notes on Motivic Cohomology. Clay Monographs in Math., vol. 2. AMS, Providence (2006)
Quinn, F.: Hyperelementary assembly for K-theory of virtually abelian groups. Preprint (2005). Available at http://www.arxiv.org/abs/math/0509294v4
Soulé, C.: Opérations in K-théorie algebrique. Can. J. Math. 37, 488–550 (1985)
Suslin, A., Voevodsky, V.: Bloch-Kato conjecture and motivic cohomology with finite coefficients. In: The Arithmetic and Geometry of Algebraic Cycles, Banff, 1998. NATO ASI Ser. C, vol. 548, pp. 117–189. Kluwer Academic, Dordrecht (2000)
Thomason, R.W.: Algebraic K-theory and étale cohomology. Ann. Sci. Ec. Norm. Super. (Paris) 18, 437–552 (1985)
Traverso, C.: Seminormality and Picard group. Ann. Sc. Norm. Super. Pisa 24, 585–595 (1970)
Vorst, T.: Localization of the K-theory of polynomial extensions. Math. Ann. 244, 33–54 (1979)
Weibel, C.A.: K-theory and analytic isomorphisms. Invent. Math. 61(2), 177–197 (1980)
Weibel, C.: Nil K-theory maps to cyclic homology. Trans. AMS 303, 541–558 (1987)
Weibel, C.: Mayer-Vietoris sequences and module structures on NK *. In: Lecture Notes in Math., vol. 854, pp. 466–493. Springer-Verlag, Berlin (1981)
Weibel, C.: Homotopy algebraic K-theory. AMS Contemp. Math. 83, 461–488 (1989)
Weibel, C.: Pic is a contracted functor. Invent. Math. 103, 351–377 (1991)
Weibel, C.: An Introduction to Homological Algebra. Cambridge University Press, Cambridge (1994)
Weibel, C.: Cyclic homology for schemes. Proc. AMS 124, 1655–1662 (1996)
Weibel, C.A.: The negative K-theory of normal surfaces. Duke Math. J. 108, 1–35 (2001)
Author information
Authors and Affiliations
Corresponding author
Additional information
Cortiñas’ research was partially supported by Conicet and partially supported by grants PICT 2006-00836, UBACyT X051, PIP 112-200801-00900, and MTM2007-64704.
Haesemeyer’s research was partially supported by NSF grant DMS-0652860.
Walker’s research was partially supported by NSF grant DMS-0601666.
Weibel’s research was supported by NSA grant MSPF-04G-184 and the Oswald Veblen Fund.
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Cortiñas, G., Haesemeyer, C., Walker, M.E. et al. Bass’ NK groups and cdh-fibrant Hochschild homology. Invent. math. 181, 421–448 (2010). https://doi.org/10.1007/s00222-010-0253-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00222-010-0253-z