Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Inventiones mathematicae
  3. Article

Bass’ NK groups and cdh-fibrant Hochschild homology

  • Open access
  • Published: 19 May 2010
  • volume 181, pages 421–448 (2010)
Download PDF

You have full access to this open access article

Inventiones mathematicae Aims and scope
Bass’ NK groups and cdh-fibrant Hochschild homology
Download PDF
  • G. Cortiñas1,
  • C. Haesemeyer2,
  • Mark E. Walker3 &
  • …
  • C. Weibel4 
  • 556 Accesses

  • 10 Citations

  • Explore all metrics

Cite this article

Abstract

The K-theory of a polynomial ring R[t] contains the K-theory of R as a summand. For R commutative and containing ℚ, we describe K *(R[t])/K *(R) in terms of Hochschild homology and the cohomology of Kähler differentials for the cdh topology.

We use this to address Bass’ question, whether K n (R)=K n (R[t]) implies K n (R)=K n (R[t 1,t 2]). The answer to this question is affirmative when R is essentially of finite type over the complex numbers, but negative in general.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Artin, M., Grothendieck, A., Verdier, J.L.: Théorie des topos et cohomologie étale des schémas. Tome 2. Springer, Berlin (1972). Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J.L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, vol. 270

    Google Scholar 

  2. Grothendieck, A., Dieudonné, J.: Étude cohomologique des faisceaux cohérents, Publ. Math. IHES 11 (1961) (prémière partie)

  3. Bass, H.: Algebraic K-theory. Benjamin, Elmsford (1968)

    Google Scholar 

  4. Bass, H.: Some problems in “classical” algebraic K-theory. In: Algebraic K-theory II. Lecture Notes in Math., vol. 342, pp. 3–73. Springer, Berlin (1973)

    Google Scholar 

  5. Cartier, P.: Groupes formels associés aux anneaux de Witt généralisés. C. R. Acad. Sci. (Paris) 265, 49–52 (1967)

    MATH  MathSciNet  Google Scholar 

  6. Cortiñas, G., Guccione, J.A., Guccione, J.J.: Decomposition of Hochschild and cyclic homology of commutative differential graded algebras. J. Pure Appl. Algebra 83, 219–235 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cortiñas, G., Haesemeyer, C., Schlichting, M., Weibel, C.: Cyclic homology, cdh-cohomology and negative K-theory. Ann. Math. 167(2), 549–573 (2008)

    Article  MATH  Google Scholar 

  8. Cortiñas, G., Haesemeyer, C., Walker, M., Weibel, C.: A counterexample to a question of Bass. Preprint (2010)

  9. Cortiñas, G., Haesemeyer, C., Weibel, C.: K-regularity, cdh-fibrant Hochschild homology, and a conjecture of Vorst. J. Am. Math. Soc. 21, 547–561 (2008)

    Article  MATH  Google Scholar 

  10. Cortiñas, G., Haesemeyer, C., Weibel, C.: Infinitesimal cohomology and the Chern character to negative cyclic homology. Math. Ann. 344, 891–922 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Davis, J.: Some remarks on Nil groups in algebraic K-theory. Preprint (2007). Available at http://arxiv.org/abs/0803.1641

  12. Dayton, B., Weibel, C.: Module Structures on the Hochschild and Cyclic Homology of Graded Rings. NATO ASI Ser. C, vol. 407, pp. 63–90. Kluwer Academic, Dordrecht (1993)

    Google Scholar 

  13. Geller, S., Weibel, C.: Hodge decompositions of Loday symbols in K-theory and cyclic homology. K-theory 8, 587–632 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goodwillie, T.: Relative algebraic K-theory and cyclic homology. Ann. Math. 124, 347–402 (1986)

    Article  MathSciNet  Google Scholar 

  15. Goodwillie, T., Lichtenbaum, S.: A cohomological bound for the h-topology. Am. J. Math. 123, 425–443 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gubeladze, J.: On Bass’ question for finitely generated algebras over large fields. Bull. Lond. Math. Soc. 41, 36–40 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Haesemeyer, C.: Descent properties of homotopy K-theory. Duke Math. J. 125, 589–620 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hartshorne, R.: Algebraic Geometry. Springer-Verlag, Berlin (1977)

    MATH  Google Scholar 

  19. Loday, J.-L.: Cyclic Homology. Grundlehren der Mathematischen Wissenschaften, vol. 301. Springer, Berlin (1992). Appendix E by M. Ronco

    Google Scholar 

  20. Murthy, M.P., Pedrini, C.: K 0 and K 1 of polynomial rings. In: Lecture Notes in Math., vol. 342, pp. 109–121. Springer-Verlag, Berlin (1973)

    Google Scholar 

  21. Mazza, C., Voevodsky, V., Weibel, C.: Lecture Notes on Motivic Cohomology. Clay Monographs in Math., vol. 2. AMS, Providence (2006)

    MATH  Google Scholar 

  22. Quinn, F.: Hyperelementary assembly for K-theory of virtually abelian groups. Preprint (2005). Available at http://www.arxiv.org/abs/math/0509294v4

  23. Soulé, C.: Opérations in K-théorie algebrique. Can. J. Math. 37, 488–550 (1985)

    MATH  Google Scholar 

  24. Suslin, A., Voevodsky, V.: Bloch-Kato conjecture and motivic cohomology with finite coefficients. In: The Arithmetic and Geometry of Algebraic Cycles, Banff, 1998. NATO ASI Ser. C, vol. 548, pp. 117–189. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  25. Thomason, R.W.: Algebraic K-theory and étale cohomology. Ann. Sci. Ec. Norm. Super. (Paris) 18, 437–552 (1985)

    MATH  MathSciNet  Google Scholar 

  26. Traverso, C.: Seminormality and Picard group. Ann. Sc. Norm. Super. Pisa 24, 585–595 (1970)

    MATH  MathSciNet  Google Scholar 

  27. Vorst, T.: Localization of the K-theory of polynomial extensions. Math. Ann. 244, 33–54 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  28. Weibel, C.A.: K-theory and analytic isomorphisms. Invent. Math. 61(2), 177–197 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  29. Weibel, C.: Nil K-theory maps to cyclic homology. Trans. AMS 303, 541–558 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  30. Weibel, C.: Mayer-Vietoris sequences and module structures on NK *. In: Lecture Notes in Math., vol. 854, pp. 466–493. Springer-Verlag, Berlin (1981)

    Google Scholar 

  31. Weibel, C.: Homotopy algebraic K-theory. AMS Contemp. Math. 83, 461–488 (1989)

    MathSciNet  Google Scholar 

  32. Weibel, C.: Pic is a contracted functor. Invent. Math. 103, 351–377 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  33. Weibel, C.: An Introduction to Homological Algebra. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  34. Weibel, C.: Cyclic homology for schemes. Proc. AMS 124, 1655–1662 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Weibel, C.A.: The negative K-theory of normal surfaces. Duke Math. J. 108, 1–35 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Dep. Matemática, FCEyN-UBA, Ciudad Universitaria Pab 1, 1428, Buenos Aires, Argentina

    G. Cortiñas

  2. Dept. of Mathematics, University of California, Los Angeles, CA, 90095, USA

    C. Haesemeyer

  3. Dept. of Mathematics, University of Nebraska–Lincoln, Lincoln, NE, 68588, USA

    Mark E. Walker

  4. Dept. of Mathematics, Rutgers University, New Brunswick, NJ, 08901, USA

    C. Weibel

Authors
  1. G. Cortiñas
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. C. Haesemeyer
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Mark E. Walker
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. C. Weibel
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to C. Haesemeyer.

Additional information

Cortiñas’ research was partially supported by Conicet and partially supported by grants PICT 2006-00836, UBACyT X051, PIP 112-200801-00900, and MTM2007-64704.

Haesemeyer’s research was partially supported by NSF grant DMS-0652860.

Walker’s research was partially supported by NSF grant DMS-0601666.

Weibel’s research was supported by NSA grant MSPF-04G-184 and the Oswald Veblen Fund.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Cortiñas, G., Haesemeyer, C., Walker, M.E. et al. Bass’ NK groups and cdh-fibrant Hochschild homology. Invent. math. 181, 421–448 (2010). https://doi.org/10.1007/s00222-010-0253-z

Download citation

  • Received: 01 March 2007

  • Accepted: 26 April 2010

  • Published: 19 May 2010

  • Issue Date: August 2010

  • DOI: https://doi.org/10.1007/s00222-010-0253-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Exact Sequence
  • Spectral Sequence
  • Inverse Limit
  • Chern Character
  • Cyclic Homology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature