Skip to main content
Log in

Posture enhancement with cerebellum transcranial electrical stimulation: a systematic review of current methods and findings

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Recently, transcranial electrical stimulation (tES) has gained increasing popularity among researchers, especially for recovery and improvement, but interpretation of these results is difficult due to variations in study methods and outcome measurements. The main goal of this study was to better understand the postural and balance indicators affected by cerebellar tES, as the cerebellum is the main brain region responsible for controlling balance. For this systematic literature review, three databases were searched for articles where the cerebellum was stimulated by any type of tES in either healthy participants or those with neurologic disorders. Postural, dynamic, and/or static stability measurements were recorded, and risk of bias was assessed on the PEDro scale. A total of 21 studies were included in the analysis. 17 studies reported improvements after application of tES. 14 studies stimulated the cerebellum unilaterally and 15 used this modality for 20 min. Moreover, all studies exclusively used transcranial direct current as the type of stimulation. Evaluation of PEDro results showed that studies included in the analysis utilized good methodology. Although there were some inconsistencies in study results, overall, it was demonstrated that tES can improve balance and postural index under both healthy and neurological conditions. Further research of bilateral cerebellar stimulation or the use of transcranial alternating current stimulation, transcranial random noise stimulation, and transcranial pulsed current stimulation is needed for a more comprehensive assessment of the potential positive effects of cerebellar tES on the balance system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Ahn JH, Lee D, Kim M, Cho JW, Chang WH, Youn J (2022) M1 and cerebellar tDCS for MSA-C: a double-blind, randomized, sham-controlled, crossover study. Cerebellum 22:386–393

    Article  PubMed  Google Scholar 

  • Andersen BB, Korbo L, Pakkenberg B (1992) A quantitative study of the human cerebellum with unbiased stereological techniques. J Comp Neurol 326:549–560

    Article  CAS  PubMed  Google Scholar 

  • Baharlouei H, Saba MA, Shaterzadeh Yazdi MJ, Jaberzadeh S (2020) The effect of transcranial direct current stimulation on balance in healthy young and older adults: a systematic review of the literature. Neurophysiol Clin 50:119–31

    Article  PubMed  Google Scholar 

  • Baharlouei H, Sadeghi-demneh E, Mehravar M, Manzari P, Shaterzadeh Yazdi MJ, Joghataei MT et al (2020) Comparison of transcranial direct current stimulation of the primary motor cortex and cerebellum on static balance in older adults. Iran Red Crescent Med J. https://doi.org/10.5812/ircmj.96259

    Article  Google Scholar 

  • Barlow JS (2002) The cerebellum and adaptive control. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Behrangrad S, Zoghi M, Kidgell D, Jaberzadeh S (2019) Does cerebellar non-invasive brain stimulation affect corticospinal excitability in healthy individuals? A systematic review of literature and meta-analysis. Neurosci Lett 706:128–139

    Article  CAS  PubMed  Google Scholar 

  • Benussi A, Koch G, Cotelli M, Padovani A, Borroni B (2015) Cerebellar transcranial direct current stimulation in patients with ataxia: a double-blind, randomized, sham-controlled study. Mov Disord 30:1701–1705

    Article  PubMed  Google Scholar 

  • Benussi A, Dell’Era V, Cotelli MS, Turla M, Casali C, Padovani A et al (2017) Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain Stimul 10:242–250

    Article  PubMed  Google Scholar 

  • Bhattacharya A, Mrudula K, Sreepada SS, Sathyaprabha TN, Pal PK, Chen R et al (2022) An overview of noninvasive brain stimulation: basic principles and clinical applications. Can J Neurol Sci J Can Sci Neurol 49:479–492

    Article  Google Scholar 

  • Bikson M, Esmaeilpour Z, Adair D, Kronberg G, Tyler WJ, Antal A et al (2019) Transcranial electrical stimulation nomenclature. Brain Stimul 12:1349–1366

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunoni AR, Nitsche MA, Bolognini N, Bikson M, Wagner T, Merabet L et al (2012) Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul 5:175–195

    Article  PubMed  Google Scholar 

  • Celnik P (2015) Understanding and modulating motor learning with cerebellar stimulation. Cerebellum 14:171–174

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen TX, Yang C-Y, Willson G, Lin C-C, Kuo S-H (2021) The efficacy and safety of transcranial direct current stimulation for cerebellar ataxia: a systematic review and meta-analysis. Cerebellum 20:124–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig CE, Doumas M (2017) Anodal transcranial direct current stimulation shows minimal, measure-specific effects on dynamic postural Control in young and older adults: a double blind: sham-controlled study. PLoS ONE 12:e0170331

    Article  PubMed  PubMed Central  Google Scholar 

  • Cullen KE, Brooks JX, Jamali M, Carriot J, Massot C (2011) Internal models of self-motion: computations that suppress vestibular reafference in early vestibular processing. Exp Brain Res 210:377–388

    Article  PubMed  Google Scholar 

  • Dijkstra BW, Bekkers EMJ, Gilat M, de Rond V, Hardwick RM, Nieuwboer A (2020) Functional neuroimaging of human postural control: A systematic review with meta-analysis. Neurosci Biobehav Rev 115:351–362

    Article  PubMed  Google Scholar 

  • Ehsani F, Samaei A, Zoghi M, Hedayati R, Jaberzadeh S (2017) The effects of cerebellar transcranial direct current stimulation on static and dynamic postural stability in older individuals: a randomized double-blind sham-controlled study. Eur J Neurosci 46:2875–2884

    Article  PubMed  Google Scholar 

  • Ehsani F, Ahmadi M, Masoudian N, Jaberzadeh S (2022) Priming of postural training with cerebellar anodal transcranial direct current stimulation for its effects on postural balance and fear of falling in patients with multiple sclerosis: a randomized, double-blind, sham-controlled study. J Clin Neurosci 99:294–301

    Article  PubMed  Google Scholar 

  • Elyamany O, Leicht G, Herrmann CS, Mulert C (2021) Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry. Eur Arch Psychiatry Clin Neurosci 271:135–156

    Article  PubMed  Google Scholar 

  • Emadi Andani M, Villa-Sánchez B, Raneri F, Dametto S, Tinazzi M, Fiorio M (2020) Cathodal cerebellar tDCS combined with visual feedback improves balance control. Cerebellum 19:812–823

    Article  PubMed  PubMed Central  Google Scholar 

  • Foerster Á, Melo L, Mello M, Castro R, Shirahige L, Rocha S et al (2017) Cerebellar transcranial direct current stimulation (ctDCS) impairs balance control in healthy individuals. Cerebellum 16:872–875

    Article  PubMed  Google Scholar 

  • França C, de Andrade DC, Teixeira MJ, Galhardoni R, Silva V, Barbosa ER et al (2018) Effects of cerebellar neuromodulation in movement disorders: a systematic review. Brain Stimul 11:249–260

    Article  PubMed  Google Scholar 

  • Galea JM, Jayaram G, Ajagbe L, Celnik P (2009) Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci 29:9115–9122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimaldi G, Manto M (2013) Anodal transcranial direct current stimulation (tDCS) decreases the amplitudes of long-latency stretch reflexes in cerebellar ataxia. Ann Biomed Eng 41:2437–2447

    Article  PubMed  Google Scholar 

  • Grimaldi G, Argyropoulos GP, Bastian A, Cortes M, Davis NJ, Edwards DJ et al (2016) Cerebellar transcranial direct current stimulation (ctDCS). Neuroscientist 22:83–97

    Article  PubMed  PubMed Central  Google Scholar 

  • Hesse S, Werner C, Schonhardt EM, Bardeleben A, Jenrich W, Kirker SGB (2007) Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: a pilot study. Restor Neurol Neurosci 25:9–15

    CAS  PubMed  Google Scholar 

  • Inukai Y, Saito K, Sasaki R, Kotan S, Nakagawa M, Onishi H (2016) Influence of transcranial direct current stimulation to the cerebellum on standing posture control. Front Hum Neurosci 10:235

    Article  Google Scholar 

  • Ito M (1972) Cerebellar control of the vestibular neurones: physiology and pharmacology. Prog Brain Res 37:377–390

    Article  CAS  PubMed  Google Scholar 

  • Jahn K, Deutschländer A, Stephan T, Kalla R, Wiesmann M, Strupp M et al (2008) Imaging human supraspinal locomotor centers in brainstem and cerebellum. Neuroimage 39:786–792

    Article  PubMed  Google Scholar 

  • Jamil A, Nitsche MA (2017) What effect does tDCS have on the brain? Basic physiology of tDCS. Curr Behav Neurosci Rep 4:331–340

    Article  Google Scholar 

  • Jayaram G, Tang B, Pallegadda R, Vasudevan EVL, Celnik P, Bastian A (2012) Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol 107:2950–2957

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawakami S, Inukai Y, Ikarashi H, Watanabe H, Miyaguchi S, Otsuru N et al (2022) Transcranial direct current stimulation and transcranial random noise stimulation over the cerebellum differentially affect the cerebellum and primary motor cortex pathway. J Clin Neurosci 100:59–65

    Article  PubMed  Google Scholar 

  • Larsell O (1937) The cerebellum. Arch Neurol Psychiatry 38:580

    Article  Google Scholar 

  • Liu A, Vöröslakos M, Kronberg G, Henin S, Krause MR, Huang Y et al (2018) Immediate neurophysiological effects of transcranial electrical stimulation. Nat Commun 9:5092

    Article  PubMed  PubMed Central  Google Scholar 

  • Lord S, Castell S (1994) Effect of exercise on balance, strength and reaction time in older people. Austral J Physiother 40:83–88

    Article  CAS  Google Scholar 

  • Louviot S, Tyvaert L, Maillard LG, Colnat-Coulbois S, Dmochowski J, Koessler L (2022) Transcranial electrical stimulation generates electric fields in deep human brain structures. Brain Stimul 15:1–12

    Article  PubMed  Google Scholar 

  • Mackrous I, Carriot J, Jamali M, Cullen KE (2019) Cerebellar prediction of the dynamic sensory consequences of gravity. Curr Biol 29:2698-2710.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLullich AMJ, Edmond CL, Ferguson KJ, Wardlaw JM, Starr JM, Seckl JR et al (2004) Size of the neocerebellar vermis is associated with cognition in healthy elderly men. Brain Cogn 56:344–348

    Article  PubMed  Google Scholar 

  • Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M (2003) Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 83:713–721

    Article  PubMed  Google Scholar 

  • Manto M, Argyropoulos GPD, Bocci T, Celnik PA, Corben LA, Guidetti M et al (2021) Consensus paper: novel directions and next steps of non-invasive brain stimulation of the cerebellum in health and disease. Cerebellum 21:1092–1122

    Article  PubMed  Google Scholar 

  • Matsunaga K, Uozumi T, Hashimoto T, Tsuji S (2001) Cerebellar stimulation in acute cerebellar ataxia. Clin Neurophysiol 112:619–622

    Article  CAS  PubMed  Google Scholar 

  • Mielke D, Wrede A, Schulz-Schaeffer W, Taghizadeh-Waghefi A, Nitsche MA, Rohde V et al (2013) Cathodal transcranial direct current stimulation induces regional, long-lasting reductions of cortical blood flow in rats. Neurol Res 35:1029–1037

    Article  PubMed  Google Scholar 

  • Nguemeni C, Hiew S, Kögler S, Homola GA, Volkmann J, Zeller D (2021) Split-belt training but not cerebellar anodal tDCS improves stability control and reduces risk of fall in patients with multiple sclerosis. Brain Sci 12:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Oldrati V, Schutter DJLG (2018) Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: a meta-analysis. Cerebellum 17:228–236

    Article  PubMed  Google Scholar 

  • Paul R, Grieve SM, Chaudary B, Gordon N, Lawrence J, Cooper N et al (2009) Relative contributions of the cerebellar vermis and prefrontal lobe volumes on cognitive function across the adult lifespan. Neurobiol Aging 30:457–465

    Article  PubMed  Google Scholar 

  • Pilloni G, Shaw M, Feinberg C, Clayton A, Palmeri M, Datta A et al (2019) Long term at-home treatment with transcranial direct current stimulation (tDCS) improves symptoms of cerebellar ataxia: a case report. J Neuroeng Rehabil 16:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Poortvliet P, Hsieh B, Cresswell A, Au J, Meinzer M (2018) Cerebellar transcranial direct current stimulation improves adaptive postural control. Clin Neurophysiol 129:33–41

    Article  PubMed  Google Scholar 

  • Ranjan S, Rezaee Z, Dutta A, Lahiri U (2021) Feasibility of cerebellar transcranial direct current stimulation to facilitate goal-directed weight shifting in chronic post-stroke hemiplegics. IEEE Trans Neural Syst Rehabil Eng 29:2203–2210

    Article  PubMed  Google Scholar 

  • Rauscher M, Yavari F, Batsikadze G, Ludolph N, Ilg W, Nitsche MA et al (2020) Lack of cerebellar tDCS effects on learning of a complex whole body dynamic balance task in middle-aged (50–65 years) adults. Neurol Res Pract 2:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezaee Z, Kaura S, Solanki D, Dash A, Srivastava MVP, Lahiri U et al (2020) Deep cerebellar transcranial direct current stimulation of the dentate nucleus to facilitate standing balance in chronic stroke survivors—a pilot study. Brain Sci 10:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Rueger MA, Keuters MH, Walberer M, Braun R, Klein R, Sparing R et al (2012) Multi-session transcranial direct current stimulation (tDCS) elicits inflammatory and regenerative processes in the rat brain. PLoS ONE 7:e43776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solanki D, Rezaee Z, Dutta A, Lahiri U (2021) Investigating the feasibility of cerebellar transcranial direct current stimulation to facilitate post-stroke overground gait performance in chronic stroke: a partial least-squares regression approach. J Neuroeng Rehabil 18:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Steiner KM, Enders A, Thier W, Batsikadze G, Ludolph N, Ilg W et al (2016) Cerebellar tDCS does not improve learning in a complex whole body dynamic balance task in young healthy subjects. PLoS ONE 11:e0163598

    Article  PubMed  PubMed Central  Google Scholar 

  • Takakusaki K (2013) Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov Disord 28:1483–1491

    Article  PubMed  Google Scholar 

  • Taube W, Mouthon M, Leukel C, Hoogewoud H-M, Annoni J-M, Keller M (2015) Brain activity during observation and motor imagery of different balance tasks: an fMRI study. Cortex 64:102–114

    Article  PubMed  Google Scholar 

  • Ugawa Y, Hanajima R, Kanazawa I (1994) Motor cortex inhibition in patients with ataxia. Electroencephalogr Clin Neurophysiol Evoked Potentials Sect 93:225–229

    Article  CAS  Google Scholar 

  • Wachter D, Wrede A, Schulz-Schaeffer W, Taghizadeh-Waghefi A, Nitsche MA, Kutschenko A et al (2011) Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat. Exp Neurol 227:322–327

    Article  PubMed  Google Scholar 

  • Workman CD, Fietsam AC, Uc EY, Rudroff T (2020) Cerebellar transcranial direct current stimulation in people with parkinson’s disease: a pilot study. Brain Sci 10:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Yavari F, Jamil A, Mosayebi Samani M, Vidor LP, Nitsche MA (2018) Basic and functional effects of transcranial electrical stimulation (tES)—an introduction. Neurosci Biobehav Rev 85:81–92

    Article  PubMed  Google Scholar 

  • Yosephi MH, Ehsani F, Zoghi M, Jaberzadeh S (2018) Multi-session anodal tDCS enhances the effects of postural training on balance and postural stability in older adults with high fall risk: primary motor cortex versus cerebellar stimulation. Brain Stimul 11:1239–1250

    Article  PubMed  Google Scholar 

  • Zandvliet SB, Meskers CGM, Kwakkel G, van Wegen EEH (2018) Short-term effects of cerebellar tDCS on standing balance performance in patients with chronic stroke and healthy age-matched elderly. Cerebellum 17:575–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors did not receive support from any organization for the submitted work. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial or non-financial interest in the subject matter or materials discussed in this manuscript.

Funding

The publication was supported from was supported from ERDF-Project Brain dynamics, No. CZ.02.01.01/00/22_008/0004643, and by an internal grant from Charles University, COOPERATIO.

Author information

Authors and Affiliations

Authors

Contributions

The initial idea for the article was from Přemysl Vlček. The literature search was initially conducted by Mostafa Mehraban Jahromi with the help of Přemysl Vlček. After selecting the articles for this review, Mostafa Mehraban Jahromi wrote the first draft of the article and Přemysl Vlček helped to prepare the final version of the manuscript. After a review the manuscript by Mostafa Mehraban Jahromi and Přemysl Vlček, Eugen Kvašňák helped with editing. During all stages, Marcela Grünerová Lippertová supervised the project/article and also helped in editing the final version of the manuscript.

Corresponding author

Correspondence to Přemysl Vlček.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Communicated by Francesco Lacquaniti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahromi, M.M., Vlček, P., Kvašňák, E. et al. Posture enhancement with cerebellum transcranial electrical stimulation: a systematic review of current methods and findings. Exp Brain Res (2024). https://doi.org/10.1007/s00221-024-06808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00221-024-06808-9

Keywords

Navigation