Skip to main content
Log in

Unintentional drifts in performance during one-hand and two-hand finger force production

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We explored the phenomena of force drifts and unintentional finger force production (enslaving), and their dependence on visual feedback. Predictions have been drawn based on the theory of control with spatial referent coordinates for condition with feedback on instructed (master) finger force, enslaved finger force, and total force for one-hand and two-hand tasks. Subjects produced force under the different feedback conditions without their knowledge. No feedback condition was also used for the one-hand tasks. Overall, feedback of master finger force led to an increase in the enslaved force, feedback on the slave finger force led to a drop in the master force, feedback on the total force led to balanced drifts in the master force down and enslaved force up, and under the no-feedback condition, master and total force drifted down with large variability in the enslaved force drifts. The patterns were the same in both hands in the two-hand tasks when feedback was provided on the forces of one hand only (without subject’s knowledge). The index of enslaving always drifted toward higher values. We interpret the findings as reflecting three main factors: drifts in the referent coordinates toward actual finger coordinates, spread of cortical excitation over representations of the fingers, and robust sharing of referent coordinates between the two hands in bimanual tasks. The large consistent drifts in enslaving toward higher values have to be considered in studies of multi-finger synergies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The original data are available from the corresponding author at a reasonable request.

References

  • Abolins V, Latash ML (2021) The nature of finger enslaving: new results and their implications. Mot Control 25:680–703

    Article  Google Scholar 

  • Abolins V, Latash ML (2022) Unintentional force drifts as consequences of indirect force control with spatial referent coordinates. Neuroscience 481:156–165

    Article  CAS  PubMed  Google Scholar 

  • Abolins V, Stremoukhov A, Walter C, Latash ML (2020) On the origin of finger enslaving: control with referent coordinates and effects of visual feedback. J Neurophysiol 124:1625–1636

    Article  PubMed  PubMed Central  Google Scholar 

  • Ambike S, Paclet F, Zatsiorsky VM, Latash ML (2014) Factors affecting grip force: anatomy, mechanics, and referent configurations. Exp Brain Res 232:1219–1231

    Article  PubMed  PubMed Central  Google Scholar 

  • Ambike S, Zatsiorsky VM, Latash ML (2015) Processes underlying unintentional finger force changes in the absence of visual feedback. Exp Brain Res 233:711–721

    Article  PubMed  Google Scholar 

  • Ambike S, Mattos D, Zatsiorsky VM, Latash ML (2016) Unsteady steady-states: central causes of unintentional force drift. Exp Brain Res 234:3597–3611

    Article  PubMed  PubMed Central  Google Scholar 

  • Beck S, Hallett M (2011) Surround inhibition in the motor system. Exp Brain Res 210:165–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuadra C, Corey J, Latash ML (2021) Distortions of the efferent copy during force perception: a study of force drifts and effects of muscle vibration. Neuroscience 457:139–154

    Article  CAS  PubMed  Google Scholar 

  • Danion F, Schöner G, Latash ML, Li S, Scholz JP, Zatsiorsky VM (2003) A force mode hypothesis for finger interaction during multi-finger force production tasks. Biol Cybern 88:91–98

    Article  PubMed  Google Scholar 

  • De Freitas PB, Freitas SMSF, Lewis MM, Huang X, Latash ML (2018) Individual preferences in motor coordination seen across the two hands: relations to movement stability and optimality. Exp Brain Res 237:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • De Freitas PB, Freitas SMSF, Reschechtko S, Corson T, Lewis MM, Huang X, Latash ML (2020) Synergic control of action in levodopa-naïve Parkinson’s disease patients: I. Multi-finger interaction and coordination. Exp Brain Res 238:229–245

    Article  PubMed  Google Scholar 

  • Diedrichsen J, Shadmehr R, Ivry RB (2010) The coordination of movement: optimal feedback control and beyond. Trends Cogn Sci 14:31–39

    Article  PubMed  Google Scholar 

  • Feldman AG (1966) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscle. Biophysics 11:565–578

    Google Scholar 

  • Feldman AG (1986) Once more on the equilibrium-point hypothesis (λ-model) for motor control. J Mot Behav 18:17–54

    Article  CAS  PubMed  Google Scholar 

  • Feldman AG (2009) New insights into action-perception coupling. Exp Brain Res 194(1):39–58 s00221–008-1667-3. https://doi.org/10.1007/s00221-008-1667-3

    Article  PubMed  Google Scholar 

  • Feldman AG (2015) Referent control of action and perception: challenging conventional theories in behavioral science. Springer, New York

    Book  Google Scholar 

  • Feldman AG, Latash ML (1982a) Interaction of afferent and efferent signals underlying joint position sense: empirical and theoretical approaches. J Motor Behav 14:174–193

    Article  CAS  Google Scholar 

  • Feldman AG, Latash ML (1982b) Afferent and efferent components of joint position sense: interpretation of kinaesthetic illusions. Biol Cybern 42:205–214

    Article  CAS  PubMed  Google Scholar 

  • Feldman AG, Ilmane N, Sangani S, Raptis H (2014) Motor control and position sense: action–perception coupling. Adv Exp Med Biol 826:17–31

    Article  PubMed  Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Hirose J, Cuadra C, Walter C, Latash ML (2020) Finger interdependence and unintentional force drifts: lessons from manipulations of visual feedback. Hum Mov Sci 74:102714

    Article  PubMed  Google Scholar 

  • Ilmane N, Sangani S, Feldman AG (2013) Corticospinal control strategies underlying voluntary and involuntary wrist movements. Behav Brain Res 236:350–358

    Article  PubMed  Google Scholar 

  • Jo HJ, Maenza C, Good DC, Huang X, Park J, Sainburg RL, Latash ML (2016) Effects of unilateral stroke on multi-finger synergies and their feed-forward adjustments. Neuroscience 319:194–205

    Article  CAS  PubMed  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  CAS  PubMed  Google Scholar 

  • Kilbreath SL, Gorman RB, Raymond J, Gandevia SC (2002) Distribution of the forces produced by motor unit activity in the human flexor digitorum profundus. J Physiol 543:289–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koeneke S, Lutz K, Wüstenberg T, Jäncke L (2004) Bimanual versus unimanual coordination: what makes the difference? Neuroimage 22:1336–1350

    Article  PubMed  Google Scholar 

  • Latash ML (2019) Physics of biological action and perception. Academic Press, New York

    Google Scholar 

  • Latash ML (2021a) Laws of nature that define biological action and perception. Phys Life Rev 36:47–67

    Article  PubMed  Google Scholar 

  • Latash ML (2021b) Efference copy in kinesthetic perception: a copy of what is it? J Neurophysiol 125:1079–1094

    Article  PubMed  PubMed Central  Google Scholar 

  • Latash ML (2023) Optimality, stability, and agility of human movement: new optimality criterion and trade-offs. Mot Control 27:123–159

    Article  Google Scholar 

  • Latash ML, Huang X (2015) Neural control of movement stability: lessons from studies of neurological patients. Neuroscience 301:39–48

    Article  CAS  PubMed  Google Scholar 

  • Latash ML, Li S, Danion F, Zatsiorsky VM (2002) Central mechanisms of finger interaction during one- and two-hand force production at distal and proximal phalanges. Brain Res 924:198–208

    Article  CAS  PubMed  Google Scholar 

  • Latash ML (2010) Motor Synergies and the Equilibrium-Point Hypothesis. Motor Control 14(3):294–322. https://doi.org/10.1123/mcj.14.3.294

  • Leijnse JN, Snijders CJ, Bonte JE, Landsmeer JM, Kalker JJ, Van Der Meulen JC, Sonneveld GJ, Hovius SE (1993) The hand of the musician: the kinematics of the bidigital finger system with anatomical restrictions. J Biomech 10:1169–1179

    Article  Google Scholar 

  • Li Z-M, Latash ML, Zatsiorsky VM (1998) Force sharing among fingers as a model of the redundancy problem. Exp Brain Res 119:276–286

    Article  CAS  PubMed  Google Scholar 

  • Li S, Danion F, Latash ML, Li Z-M, Zatsiorsky VM (2000) Characteristics of finger force production during one- and two-hand tasks. Hum Mov Sci 19:897–924

    Article  Google Scholar 

  • Li S, Danion F, Latash ML, Li Z-M, Zatsiorsky VM (2001) Bilateral deficit and symmetry in finger force production during two-hand multi-finger tasks. Exp Brain Res 141:530–540

    Article  CAS  PubMed  Google Scholar 

  • Li S, Danion F, Zatsiorsky VM, Latash ML (2002) Coupling phenomena during asynchronous submaximal two-hand, multi-finger force production tasks. Neurosci Lett 331:75–78

    Article  CAS  PubMed  Google Scholar 

  • Li S, Latash ML, Yue GH, Siemionow V, Sahgal V (2003) The effects of stroke and age on finger interaction in multi-finger force production tasks. Clin Neurophysiol 114:1646–1655

    Article  PubMed  Google Scholar 

  • Lund JS, Angelucci A, Bressloff PC (2003) Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex 13:15–24

    Article  PubMed  Google Scholar 

  • Park J, Wu Y-H, Lewis MM, Huang X, Latash ML (2012) Changes in multi-finger interaction and coordination in Parkinson’s disease. J Neurophysiol 108:915–924

    Article  PubMed  PubMed Central  Google Scholar 

  • Pollok B, Butz M, Gross J, Schnitzler A (2007) Intercerebellar coupling contributes to bimanual coordination. J Cogn Neurosci 19:704–719

    Article  PubMed  Google Scholar 

  • Poon C, Chin-Cottongim LG, Coombes SA, Corcos DM, Vaillancourt DE (2012) Spatiotemporal dynamics of brain activity during the transition from visually guided to memory-guided force control. J Neurophysiol 108:1335–1348

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranganathan R, Newell KM (2008a) Online feedback and the regulation of degrees of freedom in motor control. Hum Mov Sci 27:577–589

    Article  PubMed  Google Scholar 

  • Ranganathan R, Newell KM (2008b) Motor synergies: feedback and error compensation within and between trials. Exp Brain Res 186:561–570

    Article  PubMed  Google Scholar 

  • Raptis H, Burtet L, Forget R, Feldman AG (2010) Control of wrist position and muscle relaxation by shifting spatial frames of reference for motoneuronal recruitment: possible involvement of corticospinal pathways. J Physiol 588:1551–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasouli O, Solnik S, Furmanek MP, Piscitelli D, Falaki A, Latash ML (2017) Unintentional drifts during quiet stance and voluntary body sway. Exp Brain Res 235:2301–2316

    Article  PubMed  PubMed Central  Google Scholar 

  • Reas C, Fry B (2007) Processing: a programming handbook for visual designers and artists. MIT Press, Cambridge

    Google Scholar 

  • Reschechtko S, Latash ML (2017) Stability of hand force production: I. Hand level control variables and multi-finger synergies. J Neurophysiol 118:3152–3164

    Article  PubMed  PubMed Central  Google Scholar 

  • Sainburg RL (2005) Handedness: differential specializations for control of trajectory and position. Exerc Sport Sci Rev 33:206–213

    Article  PubMed  Google Scholar 

  • Schieber MH (1991) Individuated finger movements of rhesus monkeys: a means of quantifying the independence of the digits. J Neurophysiol 65:1381–1391

    Article  CAS  PubMed  Google Scholar 

  • Schieber MH (2001) Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol 86:2125–2143

    Article  CAS  PubMed  Google Scholar 

  • Schieber MH, Hibbard LS (1993) How somatotopic is the motor cortex hand area? Science 261:489–492

    Article  CAS  PubMed  Google Scholar 

  • Schieber MH, Santello M (2004) Hand function: peripheral and central constraints on performance. J Appl Physiol 96:2293–2300

    Article  PubMed  Google Scholar 

  • Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306

    Article  CAS  PubMed  Google Scholar 

  • Shadmehr R, Wise SP (2004) The computational neurobiology of reaching and pointing: a foundation for motor learning. MIT press

  • Shinohara M, Li S, Kang N, Zatsiorsky VM, Latash ML (2003) Effects of age and gender on finger coordination in MVC and submaximal force-matching tasks. J Appl Physiol 94:259–270

    Article  PubMed  Google Scholar 

  • Slifkin AB, Vaillancourt DE, Newell KM (2000) Intermittency in the control of continuous force production. J Neurophysiol 84:1708–2171

    Article  CAS  PubMed  Google Scholar 

  • Slobounov S, Chiang H, Johnston J, Ray W (2002) Modulated cortical control of individual fingers in experienced musicians: an EEG study. Clin Neurophysiol 113:2013–2024

    Article  CAS  PubMed  Google Scholar 

  • Turvey MT (1990) Coordination. American psychologist 45(8):938

  • Vaillancourt DE, Russell DM (2002) Temporal capacity of short-term visuomotor memory in continuous force production. Exp Brain Res 145:275–285

    Article  PubMed  Google Scholar 

  • Vaillancourt DE, Slifkin AB, Newell KM (2001) Visual control of isometric force in Parkinson’s disease. Neurophysiologia 39:1410–1418

    CAS  Google Scholar 

  • Vaillancourt DE, Thulborn KR, Corcos DM (2003) Neural basis for the processes that underlie visually guided and internally guided force control in humans. J Neurophysiol 90:3330–3340

    Article  PubMed  Google Scholar 

  • van Duinen H, Gandevia SC (2011) Constraints for control of the human hand. J Physiol 589:5583–5593

    Article  PubMed  PubMed Central  Google Scholar 

  • von Schroeder HP, Botte MJ, Gellman H (1990) Anatomy of the juncturae tendinum of the hand. J Hand Surg 15:595–602

    Article  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347

    Article  CAS  PubMed  Google Scholar 

  • Zatsiorsky VM, Li ZM, Latash ML (2000) Enslaving effects in multi-finger force production. Exp Brain Res 131:187–195

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Zhang L, Latash ML (2015) Intentional and unintentional multi-joint movements: their nature and structure of variance. Neuroscience 289:181–193

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study received no external funding support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valters Abolins or Mark L. Latash.

Ethics declarations

Conflict of interest

No conflict of interest is claimed by any of the authors.

Additional information

Communicated by Bill J. Yates.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abolins, V., Ormanis, J. & Latash, M.L. Unintentional drifts in performance during one-hand and two-hand finger force production. Exp Brain Res 241, 699–712 (2023). https://doi.org/10.1007/s00221-023-06559-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-023-06559-z

Keywords

Navigation