Skip to main content
Log in

Training the brain to time: the effect of neurofeedback of SMR–Beta1 rhythm on time perception in healthy adults

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The timing ability plays an important role in everyday activities and is influenced by several factors such as the attention and arousal levels of the individuals. The effects of these factors on time perception have been interpreted through psychological models of time, including Attentional Gate Model (AGM). On the other hand, research has indicated that neurofeedback (NFB) training improves attention and increases arousal levels in the clinical and healthy population. Regarding the link between attentional processing and arousal levels and NFB and their relation to time perception, this study is a pilot demonstration of the influence of SMR–Beta1 (12–18 Hz) NFB training on time production and reproduction performance in healthy adults. To this end, 12 (9 female and 3 males; M = 26.3, SD = 3.8) and 12 participants (7 female and 5 males; M = 26.9, SD = 3.1) were randomly assigned into the experimental (with SMR–Beta1 NFB) and control groups (without any NFB training), respectively. The experimental group underwent intensive 10 sessions (3 days a week) of the 12–18 Hz up-training. Time production and reproduction performance were assessed pre and post NFB training for all participants. Three-way mixed ANOVA was carried out on T-corrected scores of reproduction and production tasks. Correlation analysis was also performed between SMR–Beta1 and time perception. While NFB training significantly influenced time production (P < 0.01), no such effect was observed for the time reproduction task. The results of the study are finally discussed within the frameworks of AGM, dual-process and cognitive aspects of time perception. Overall, our results contribute to disentangling the underlying mechanisms of temporal performance in healthy individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Zakay and Block (1996, 1997)

Fig. 2

Adapted from Nazari et al. (2020)

Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Androulidakis AG, Doyle LM, Gilbertson TP, Brown P (2006) Corrective movements in response to displacements in visual feedback are more effective during periods of 13–35 Hz oscillatory synchrony in the human corticospinal system. Eur J Neurosci 24(11):3299–3304

    Article  PubMed  Google Scholar 

  • Arnold LE, Lofthouse N, Hersch S, Pan X, Hurt E, Bates B, Grantier C (2013) EEG neurofeedback for ADHD: double-blind sham-controlled randomized pilot feasibility trial. J Atten Disord 17(5):410–419

    Article  PubMed  Google Scholar 

  • Arns M, Heinrich H, Ros T, Rothenberger A, Strehl U (2015) Neurofeedback in ADHD. Front Hum Neurosci 9:602

    Article  PubMed  PubMed Central  Google Scholar 

  • Bar-Haim Y, Kerem A, Lamy D, Zakay D (2010) When time slows down: the influence of threat on time perception in anxiety. Cogn Emot 24(2):255–263

    Article  Google Scholar 

  • Bartolo R, Merchant H (2015) β oscillations are linked to the initiation of sensory-cued movement sequences and the internal guidance of regular tapping in the monkey. J Neurosci 35(11):4635–4640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartolo R, Prado L, Merchant H (2014) Information processing in the primate basal ganglia during sensory-guided and internally driven rhythmic tapping. J Neurosci 34(11):3910–3923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baudouin A, Vanneste S, Isingrini M, Pouthas V (2006) Differential involvement of internal clock and working memory in the production and reproduction of duration: a study on older adults. Acta Physiol (oxf) 121(3):285–296

    Google Scholar 

  • Berlin H, Rolls E, Kischka U (2004) Impulsivity, time perception, emotion and reinforcement sensitivity in patients with orbitofrontal cortex lesions. Brain 127(5):1108–1126

    Article  CAS  PubMed  Google Scholar 

  • Block RA, Gruber RP (2014) Time perception, attention, and memory: a selective review. Acta Physiol (oxf) 149:129–133

    Google Scholar 

  • Block RA, Hancock PA, Zakay D (2010) How cognitive load affects duration judgments: a meta-analytic review. Acta Physiol (oxf) 134(3):330–343

    Google Scholar 

  • Block RA, Zakay D, Hancock PA (1998) Human aging and duration judgments: a meta-analytic review. Psychol Aging 13(4):584

    Article  CAS  PubMed  Google Scholar 

  • Bluschke A, Broschwitz F, Kohl S, Roessner V, Beste C (2016) The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback. Sci Rep 6(1):1–9

    Article  CAS  Google Scholar 

  • Broadway JM, Engle RW (2011) Individual differences in working memory capacity and temporal discrimination. PLoS ONE 6(10):e25422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SW (1985) Time perception and attention: the effects of prospective versus retrospective paradigms and task demands on perceived duration. Percept Psychophys 38(2):115–124

    Article  CAS  PubMed  Google Scholar 

  • Brown SW (2008) Time and attention: review of the literature. In: S. Grondin (Ed), Bingley, U.K.: Emerald Group. Psychol time , pp, 111–138.

  • Brown SW, Newcomb DC, Kahrl KG (1995) Temporal-signal detection and individual differences in timing. Perception 24(5):525–538

    Article  CAS  PubMed  Google Scholar 

  • Burle B, Casini L (2001) Dissociation between activation and attention effects in time estimation: implications for internal clock models. J Exp Psychol Hum Percept Perform 27(1):195

    Article  CAS  PubMed  Google Scholar 

  • Capizzi M, Correa Á (2018) Measuring temporal preparation. In: Timing and time perception: procedures, measures, and applications. Brill, Leiden, pp 216–232

  • Capizzi M, Sanabria D, Correa Á (2012) Dissociating controlled from automatic processing in temporal preparation. Cognition 123(2):293–302

    Article  PubMed  Google Scholar 

  • Chabot RJ, Serfontein G (1996) Quantitative electroencephalographic profiles of children with attention deficit disorder. Biol Psychiat 40(10):951–963

    Article  CAS  PubMed  Google Scholar 

  • Clarke AR, Barry RJ, McCarthy R, Selikowitz M (2001) EEG-defined subtypes of children with attention-deficit/hyperactivity disorder. Clin Neurophysiol 112(11):2098–2105

    Article  CAS  PubMed  Google Scholar 

  • Cocchini G, Logie RH, Della Sala S, MacPherson SE, Baddeley AD (2002) Concurrent performance of two memory tasks: evidence for domain-specific working memory systems. Mem Cognit 30(7):1086–1095

    Article  PubMed  Google Scholar 

  • Desimone R (1996) Neural mechanisms for visual memory and their role in attention. Proc Natl Acad Sci 93(24):13494–13499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18(1):193–222

    Article  CAS  PubMed  Google Scholar 

  • Dessy E, Van Puyvelde M, Mairesse O, Neyt X, Pattyn N (2018) Cognitive performance enhancement: do biofeedback and neurofeedback work? J Cogn Enhanc 2(1):12–42

    Article  Google Scholar 

  • Egner T, Gruzelier JH (2001) Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans. NeuroReport 12(18):4155–4159

    Article  CAS  PubMed  Google Scholar 

  • Egner T, Gruzelier JH (2004) EEG biofeedback of low beta band components: frequency-specific effects on variables of attention and event-related brain potentials. Clin Neurophysiol 115(1):131–139

    Article  CAS  PubMed  Google Scholar 

  • Egner T, Sterman MB (2006) Neurofeedback treatment of epilepsy: from basic rationale to practical application. Expert Rev Neurother 6(2):247–257

    Article  PubMed  Google Scholar 

  • Egner T, Zech T, Gruzelier JH (2004) The effects of neurofeedback training on the spectral topography of the electroencephalogram. Clin Neurophysiol 115(11):2452–2460

    Article  PubMed  Google Scholar 

  • Enriquez-Geppert S, Huster RJ, Herrmann CS (2017) EEG-neurofeedback as a tool to modulate cognition and behavior: a review tutorial. Front Hum Neurosci 11:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Faller J, Cummings J, Saproo S, Sajda P (2019) Regulation of arousal via online neurofeedback improves human performance in a demanding sensory-motor task. Proc Natl Acad Sci 116(13):6482–6490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamache P-L, Grondin S (2010) The lifespan of time intervals in reference memory. Perception 39:1431–1451

    Article  PubMed  Google Scholar 

  • Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 84(3):279

    Article  Google Scholar 

  • Gibbon J, Church RM, Meck WH (1984) Scalar timing in memory. Ann N Y Acad Sci 423(1):52–77

    Article  CAS  PubMed  Google Scholar 

  • Gilbertson T, Lalo E, Doyle L, Di Lazzaro V, Cioni B, Brown P (2005) Existing motor state is favored at the expense of new movement during 13–35 Hz oscillatory synchrony in the human corticospinal system. J Neurosci 25(34):7771–7779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gopher D, Brickner M, Navon D (1982) Different difficulty manipulations interact differently with task emphasis: evidence for multiple resources. J Exp Psychol Hum Percept Perform 8(1):146

    Article  CAS  PubMed  Google Scholar 

  • Grommet EK, Droit-Volet S, Gil S, Hemmes NS, Baker AH, Brown BL (2011) Time estimation of fear cues in human observers. Behav Proc 86(1):88–93

    Article  Google Scholar 

  • Grondin S (2010) Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten Percept Psychophys 72(3):561–582

    Article  PubMed  Google Scholar 

  • Grondin S, Metthé L, Koren S (1994) Motor disruption in the production of time intervals with finger taps. Can J Exp Psychol/revue Canadienne De Psychologie Expérimentale 48(3):460

    Article  Google Scholar 

  • Gruzelier JH (2014) Differential effects on mood of 12–15 (SMR) and 15–18 (beta1) Hz neurofeedback. Int J Psychophysiol 93(1):112–115

    Article  PubMed  Google Scholar 

  • Gu B-M, van Rijn H, Meck WH (2015) Oscillatory multiplexing of neural population codes for interval timing and working memory. Neurosci Biobehav Rev 48:160–185

    Article  PubMed  Google Scholar 

  • Holtmann M, Steiner S, Hohmann S, Poustka L, Banaschewski T, Bölte S (2011) Neurofeedback in autism spectrum disorders. Dev Med Child Neurol 53(11):986–993

    Article  PubMed  Google Scholar 

  • Jones LA, Wearden JH (2003) More is not necessarily better: examining the nature of the temporal reference memory component in timing. Q J Exp Psychol 56B:321–343

    Article  Google Scholar 

  • Joundi RA, Jenkinson N, Brittain J-S, Aziz TZ, Brown P (2012) Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol 22(5):403–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahneman D (1973) Attention and effort (vol 1063): Englewood Cliffs, NJ: Prentice-Hall.

  • Kaiser DA, Othmer S (2000) Effect of neurofeedback on variables of attention in a large multi-center trial. J Neurother 4(1):5–15

    Article  Google Scholar 

  • Kamiya J (1968) Conscious control of brain waves. Psychol Today 1 (11): 57–60

  • Keller I (2001) Neurofeedback therapy of attention deficits in patients with traumatic brain injury. J Neurother 5(1–2):19–32

    Article  Google Scholar 

  • Kononowicz TW, van Rijn H (2015) Single trial beta oscillations index time estimation. Neuropsychologia 75:381–389

    Article  PubMed  Google Scholar 

  • Kropotov JD (2010) Quantitative EEG, event-related potentials and neurotherapy. Academic Press, Dublin

    Google Scholar 

  • Lalo E, Gilbertson T, Doyle L, Di Lazzaro V, Cioni B, Brown P (2007) Phasic increases in cortical beta activity are associated with alterations in sensory processing in the human. Exp Brain Res 177(1):137–145

    Article  PubMed  Google Scholar 

  • Lubar JF, Shouse MN (1976) EEG and behavioral changes in a hyperkinetic child concurrent with training of the sensorimotor rhythm (SMR). Biofeedback Self Regul 1(3):293–306

    Article  CAS  PubMed  Google Scholar 

  • Macar F (1980) Le temps: perspectives psychophysiologiques, vol 91. Editions Mardaga, Auderghem

    Google Scholar 

  • Macar F, Grondin S, Casini L (1994) Controlled attention sharing influences time estimation. Mem Cognit 22(6):673–686

    Article  CAS  PubMed  Google Scholar 

  • Marlats F, Bao G, Chevallier S, Boubaya M, Djabelkhir-Jemmi L, Wu Y-H, Azabou E (2020) SMR/theta neurofeedback training improves cognitive performance and EEG activity in elderly with mild cognitive impairment: a pilot study. Front Aging Neurosci 12:147

    Article  PubMed  PubMed Central  Google Scholar 

  • Matell MS, King GR, Meck WH (2004) Differential modulation of clock speed by the administration of intermittent versus continuous cocaine. Behav Neurosci 118(1):150

    Article  CAS  PubMed  Google Scholar 

  • McDowd JM, Vercruyssen M, Birren JE (2020) Aging, divided attention, and dual-task performance. In: Damos, D. (Ed.), Multiple-task performance. England: Taylor & Francis, pp 387–414

  • Meck WH (2005) Neuropsychology of timing and time perception. Brain Cogn 58(1):1–8

    Article  PubMed  Google Scholar 

  • Meck WH, Benson AM (2002) Dissecting the brain’s internal clock: how frontal–striatal circuitry keeps time and shifts attention. Brain Cogn 48(1):195–211

    Article  PubMed  Google Scholar 

  • Mehlabani SN, Sabaghypour S, Nazari MA (2020) Number is special: time, space, and number interact in a temporal reproduction task. Cogn Process 21(3): 449-459

  • Mella N, Conty L, Pouthas V (2011) The role of physiological arousal in time perception: psychophysiological evidence from an emotion regulation paradigm. Brain Cogn 75(2):182–187

    Article  CAS  PubMed  Google Scholar 

  • Memória CM, Muela H, Moraes NC, Costa-Hong VA, Machado MF, Nitrini R, Yassuda MS (2018) Applicability of the test of variables of attention—TOVA in Brazilian adults. Dement Neuropsychol 12(4):394–401

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikicin M, Szczypinska M, Skwarek K (2018) Neurofeedback needs support! Effects of neurofeedback-EEG training in terms of the level of attention and arousal control in sports shooters. Balt J Health Phys Activity 10(3):72–79

    Article  Google Scholar 

  • Mioni G (2018) Methodological issues in the study of prospective timing. Timing and time perception: procedures, measures, and applications. Brill, Leiden, pp 79–97

    Google Scholar 

  • Mioni G, Capizzi M, Stablum F (2020) Age-related changes in time production and reproduction tasks: involvement of attention and working memory processes. Aging Neuropsychol Cogn 27(3):412–429

    Article  Google Scholar 

  • Mioni G, Stablum F, McClintock SM, Grondin S (2014) Different methods for reproducing time, different results. Atten Percept Psychophys 76(3):675–681

    Article  PubMed  PubMed Central  Google Scholar 

  • Mioni G, Stablum F, Prunetti E, Grondin S (2016) Time perception in anxious and depressed patients: a comparison between time reproduction and time production tasks. J Affect Disord 196:154–163

    Article  PubMed  Google Scholar 

  • Monastra VJ, Monastra DM, George S (2002) The effects of stimulant therapy, EEG biofeedback, and parenting style on the primary symptoms of attention-deficit/hyperactivity disorder. Appl Psychophysiol Biofeedback 27(4):231–249

    Article  PubMed  Google Scholar 

  • Mueller ST, Piper BJ (2014) The psychology experiment building language (PEBL) and PEBL test battery. J Neurosci Methods 222:250–259

    Article  PubMed  Google Scholar 

  • Naas A, Rodrigues J, Knirsch J-P, Sonderegger A (2019) Neurofeedback training with a low-priced EEG device leads to faster alpha enhancement but shows no effect on cognitive performance: a single-blind, sham-feedback study. PLoS ONE 14(9):e0211668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazari MA, Caria A, Soltanlou M (2017) Time for action versus action in time: time estimation differs between motor preparation and execution. J Cogn Psychol 29(2):129–136. Retrieved from <Go to ISI>://WOS:000396940100003

  • Nazari MA, Mosanezhad E, Hashemi T, Jahan A (2012) The effectiveness of neurofeedback training on EEG coherence and neuropsychological functions in children with reading disability. Clin EEG Neurosci 43(4):315–322

    Article  PubMed  Google Scholar 

  • Nazari MA, Querne L, De Broca A, Berquin P (2011) Effectiveness of EEG biofeedback as compared with methylphenidate in the treatment of attention-deficit/hyperactivity disorder: a clinical outcome study. Neurosci Med 2(2):78–86

    Article  Google Scholar 

  • Nazari MA, Sabaghypour S, Pezhmanfard M, Azizi K, Vahedi S (2021) The influence of children’s mathematical competence on performance in mental number line, time knowledge and time perception. Psychol Res 85(5): 2023-2035

  • Norris SL, Currieri M (1999) Performance enhancement training through neurofeedback. In Evans JR and Abarbanel A (eds.) Introduction to quantitative EEG and neurofeedback. San Diego: Academic Press, pp 223–240

  • Noulhiane M, Mella N, Samson S, Ragot R, Pouthas V (2007a) How emotional auditory stimuli modulate time perception. Emotion 7(4):697–704

    Article  PubMed  Google Scholar 

  • Ogden RS, Henderson J, McGlone F, Richter M (2019) Time distortion under threat: Sympathetic arousal predicts time distortion only in the context of negative, highly arousing stimuli. PLoS ONE 14(5):e0216704

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan Y, Luo Q-Y (2012) Working memory modulates the perception of time. Psychon Bull Rev 19(1):46–51

    Article  CAS  PubMed  Google Scholar 

  • Paul M, Ganesan S, Sandhu JS, Simon JV (2012) Effect of sensory motor rhythm neurofeedback on psycho-physiological, electro-encephalographic measures and performance of archery players. Ibnosina J Med Biomed Sci 4(2): 45-57

  • Penton-Voak IS, Edwards H, Percival A, Wearden JH (1996) Speeding up an internal clock in humans? Effects of click trains on subjective duration. J Exp Psychol Anim Behav Process 22(3):307

    Article  CAS  PubMed  Google Scholar 

  • Perbal S, Droit-Volet S, Isingrini M, Pouthas V (2002) Relationships between age-related changes in time estimation and age-related changes in processing speed, attention, and memory. Aging Neuropsychol Cogn 9(3):201–216

    Article  Google Scholar 

  • Perreau-Linck E, Lessard N, Lévesque J, Beauregard M (2010) Effects of neurofeedback training on inhibitory capacities in ADHD children: A single-blind, randomized, placebo-controlled study. J Neurother 14(3):229–242

    Article  Google Scholar 

  • Pimenta MG, van Run C, de Fockert JW, Gruzelier JH (2018) Neurofeedback of SMR and beta1 frequencies: an investigation of learning indices and frequency-specific effects. Neuroscience 378:211–224

    Article  CAS  PubMed  Google Scholar 

  • Pogosyan A, Gaynor LD, Eusebio A, Brown P (2009) Boosting cortical activity at beta-band frequencies slows movement in humans. Curr Biol 19(19):1637–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polti I, Martin B, van Wassenhove V (2018) The effect of attention and working memory on the estimation of elapsed time. Sci Rep 8(1):1–11

    Article  CAS  Google Scholar 

  • Posner MI, Boies SJ (1971) Components of attention. Psychol Rev 78(5):391

    Article  Google Scholar 

  • Pouthas V, Perbal S (2004) Time perception depends on accurate clock mechanisms as well as unimpaired attention and memory processes. Acta Neurobiol Exp 64(3):367–386

    Google Scholar 

  • Rattat A-C, Droit-Volet S (2012) What is the best and easiest method of preventing counting in different temporal tasks? Behav Res Methods 44(1):67–80

    Article  PubMed  Google Scholar 

  • Riccio CA, Reynolds CR, Lowe P, Moore JJ (2002) The continuous performance test: a window on the neural substrates for attention? Arch Clin Neuropsychol 17(3):235–272

    Article  PubMed  Google Scholar 

  • Rubia K, Halari R, Christakou A, Taylor E (2009) Impulsiveness as a timing disturbance: neurocognitive abnormalities in attention-deficit hyperactivity disorder during temporal processes and normalization with methylphenidate. Philos Trans R Soc B Biol Sci 364(1525):1919–1931

    Article  CAS  Google Scholar 

  • Shakibaei F, Sabaghypour S, Isfahani FF, Jazi ND (2021) EEG biofeedback for treatment of psychogenic non-epileptic seizures (PNES) in multiple sclerosis: a case report. Appl Psychophysiol Biofeedback 46(2):175–181

    Article  PubMed  Google Scholar 

  • Smith A, Taylor E, Warner Rogers J, Newman S, Rubia K (2002) Evidence for a pure time perception deficit in children with ADHD. J Child Psychol Psychiatry 43(4):529–542

    Article  PubMed  Google Scholar 

  • Soto D, Hodsoll J, Rotshtein P, Humphreys GW (2008) Automatic guidance of attention from working memory. Trends Cogn Sci 12(9):342–348

    Article  PubMed  Google Scholar 

  • Sterman MB (1996) Physiological origins and functional correlates of EEG rhythmic activities: implications for self-regulation. Biofeedback Self Regul 21(1):3–33

    Article  CAS  PubMed  Google Scholar 

  • Sterman MB, Howe RC, Macdonald LR (1970) Facilitation of spindle-burst sleep by conditioning of electroencephalographic activity while awake. Science 167(3921):1146–1148

    Article  CAS  PubMed  Google Scholar 

  • Sullivan EV, Corkin S, Growdon JH (1986) Verbal and nonverbal short-term memory in patients with Alzheimer’s disease and in healthy elderly subjects. Dev Neuropsychol 2(4):387–400

    Article  Google Scholar 

  • Treisman M, Cook N, Naish PL, MacCrone JK (1994) The internal clock: electroencephalographic evidence for oscillatory processes underlying time perception. Q J Exp Psychol Sect A 47(2):241–289

    Article  CAS  Google Scholar 

  • Treisman M, Faulkner A, Naish PL, Brogan D (1990) The internal clock: evidence for a temporal oscillator underlying time perception with some estimates of its characteristic frequency. Perception 19(6):705–742

    Article  CAS  PubMed  Google Scholar 

  • Tsatali M, Sidiropoulos S, Bamidis P (2019) Effective Neurofeedback applications in anxiety and attention symptomatology in adolescents. Encéphale 45:S80

    Article  Google Scholar 

  • van Dongen-Boomsma M, Vollebregt MA, Slaats-Willemse D, Buitelaar JK (2013) A randomized placebo-controlled trial of electroencephalographic (EEG) neurofeedback in children with attention-deficit/hyperactivity disorder. J Clin Psychiatry 74(8):821–827

    Article  PubMed  Google Scholar 

  • van Son D, van der Does W, Band GP, Putman P (2020) EEG theta/beta ratio neurofeedback training in healthy females. Appl Psychophysiol Biofeedback 45(3):195-210

  • Vernon D, Egner T, Cooper N, Compton T, Neilands C, Sheri A, Gruzelier J (2003) The effect of training distinct neurofeedback protocols on aspects of cognitive performance. Int J Psychophysiol 47(1):75–85

    Article  PubMed  Google Scholar 

  • Vollebregt MA, van Dongen-Boomsma M, Buitelaar JK, Slaats-Willemse D (2014) Does EEG-neurofeedback improve neurocognitive functioning in children with attention-deficit/hyperactivity disorder? A systematic review and a double-blind placebo-controlled study. J Child Psychol Psychiatry 55(5):460–472

    Article  PubMed  Google Scholar 

  • Wang J-R, Hsieh S (2013) Neurofeedback training improves attention and working memory performance. Clin Neurophysiol 124(12):2406–2420

    Article  PubMed  Google Scholar 

  • Wearden JH, Lejeune H (2008) Scalar properties in human timing: conformity and violations. Q J Exp Psycholo 61:569–587. https://doi.org/10.1080/17470210701282576

    Article  CAS  Google Scholar 

  • Wearden J, O’Rourke SC, Matchwick C, Min Z, Maeers S (2010) Task switching and subjective duration. Q J Exp Psychol 63(3):531–543

    Article  CAS  Google Scholar 

  • Wickens CD (1980) The structure of attention and performance. In R. S. Nickerson (Ed.),Attention and performance VIII (pp. 239–257). Hillsdale, NJ: Erlbaum.

  • Wing AM, Kristofferson A (1973) The timing of interresponse intervals. Percept Psychophys 13(3):455–460

    Article  Google Scholar 

  • Yamashita A, Hayasaka S, Kawato M, Imamizu H (2017) Connectivity neurofeedback training can differentially change functional connectivity and cognitive performance. Cereb Cortex 27(10):4960–4970

    Article  PubMed  Google Scholar 

  • Zakay D (1992) The role of attention in children’s time perception. J Exp Child Psychol 54(3):355–371

    Article  CAS  PubMed  Google Scholar 

  • Zakay D, Block RA (1996) The role of attention in time estimation processes. In Pastor MA & Artieda J (Eds.),Time, internal clocks and movement. Amsterdam: Elsevier, North-Holland, pp 143–164

  • Zakay D, Block RA (1997) Temporal cognition. Curr Dir Psychol Sci 6(1):12–16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Nazari.

Additional information

Communicated by Francesca Frassinetti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (SAV 5 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behzadifard, B., Sabaghypour, S., Farkhondeh Tale Navi, F. et al. Training the brain to time: the effect of neurofeedback of SMR–Beta1 rhythm on time perception in healthy adults. Exp Brain Res 240, 2027–2038 (2022). https://doi.org/10.1007/s00221-022-06380-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-022-06380-0

Keywords

Navigation