Skip to main content

Phoenixin-14 reduces the frequency of interictal-like events in mice brain slices

Abstract

Phoenixin-14 (PNX-14) has a wide bioactivity in the central nervous system. Its role in the hypothalamus has been investigated, and it has been reported that it is involved in the regulation of excitability in hypothalamic neurons. However, its role in the regulation of excitability in entorhinal cortex and the hippocampus is unknown. In this study, we investigated whether i. PNX-14 induces any synchronous discharges or epileptiform activity and ii. PNX-14 has any effect on already initiated epileptiform discharges. We used 350 µm thick acute horizontal hippocampal–entorhinal cortex slices obtained from 30- to 35-day-old mice. Extracellular field potential recordings were evaluated in the entorhinal cortex and hippocampus CA1 region. Bath application of PNX-14 did not initiate any epileptiform activity or abnormal discharges. 4-Aminopyridine was applied to induce epileptiform activity in the slices. We found that 200 nM PNX-14 reduced the frequency of interictal-like events in both the entorhinal cortex and hippocampus CA1 region which was induced by 4-aminopyridine. Furthermore, PNX-14 led to a similar suppression in the total power of local field potentials of 1–120 Hz. The frequency or the duration of the ictal events was not affected. These results exhibited for the first time that PNX-14 has a modulatory effect on synchronized neuronal discharges which should be considered in future therapeutic approaches.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abidin İ, Aydin-Abidin S, Mittmann T (2019) Neuronal excitability and spontaneous synaptic transmission in the entorhinal cortex of BDNF heterozygous mice. Neurosci Lett 690:69–75. https://doi.org/10.1016/j.neulet.2018.10.019

    CAS  Article  PubMed  Google Scholar 

  2. Avoli M, Jefferys JGR (2016) Models of drug-induced epileptiform synchronization in vitro. J Neurosci Methods 260:26–32. https://doi.org/10.1016/j.jneumeth.2015.10.006

    CAS  Article  PubMed  Google Scholar 

  3. Avoli M, D’Antuono M, Louvel J et al (2002) Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog Neurobiol 68:167–207. https://doi.org/10.1016/S0301-0082(02)00077-1

    CAS  Article  PubMed  Google Scholar 

  4. Aydin-Abidin S, Abidin İ (2019) 7,8-Dihydroxyflavone potentiates ongoing epileptiform activity in mice brain slices. Neurosci Lett 703:25–31. https://doi.org/10.1016/j.neulet.2019.03.013

    CAS  Article  PubMed  Google Scholar 

  5. Bell KA, Delong R, Goswamee P, McQuiston AR (2021) The entorhinal cortical alvear pathway differentially excites pyramidal cells and interneuron subtypes in hippocampal CA1. Cereb Cortex 31:2382–2401. https://doi.org/10.1093/cercor/bhaa359

    Article  PubMed  Google Scholar 

  6. Binder DK, Steinhäuser C (2021) Astrocytes and epilepsy. Neurochem Res. https://doi.org/10.1007/s11064-021-03236-x

    Article  PubMed  Google Scholar 

  7. Brückner C, Heinemann U (2000) Effects of standard anticonvulsant drugs on different patterns of epileptiform discharges induced by 4-aminopyridine in combined entorhinal cortex–hippocampal slices. Brain Res 859:15–20. https://doi.org/10.1016/S0006-8993(99)02348-3

    Article  PubMed  Google Scholar 

  8. Chang M, Dian JA, Dufour S et al (2018) Brief activation of GABAergic interneurons initiates the transition to ictal events through post-inhibitory rebound excitation. Neurobiol Dis 109:102–116. https://doi.org/10.1016/j.nbd.2017.10.007

    CAS  Article  PubMed  Google Scholar 

  9. Coetzee WA, Amarillo Y, Chiu J et al (1999) Molecular diversity of K+ channels. Ann N Y Acad Sci 868:233–255. https://doi.org/10.1111/j.1749-6632.1999.tb11293.x

    CAS  Article  PubMed  Google Scholar 

  10. Dingledine R, Dodd J, Kelly JS (1980) The in vitro brain slice as a useful neurophysiological preparation for intracellular recording. J Neurosci Methods 2:323–362. https://doi.org/10.1016/0165-0270(80)90002-3

    CAS  Article  PubMed  Google Scholar 

  11. Ferguson AV, Latchford KJ, Samson WK (2008) The paraventricular nucleus of the hypothalamus – a potential target for integrative treatment of autonomic dysfunction. Expert Opin Ther Targets 12:717–727. https://doi.org/10.1517/14728222.12.6.717

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Fueta Y, Avoli M (1992) Effects of antiepileptic drugs on 4-aminopyridine-induced epileptiform activity in young and adult rat hippocampus. Epilepsy Res 12:207–215. https://doi.org/10.1016/0920-1211(92)90075-5

    CAS  Article  PubMed  Google Scholar 

  13. Gasparini S, Stein LM, Loewen SP et al (2018) Novel regulator of vasopressin secretion: phoenixin. Am J Physiol Regul Integr Comp Physiol 314:R623–R628. https://doi.org/10.1152/ajpregu.00426.2017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Gonzalez-Sulser A, Wang J, Motamedi GK et al (2011) The 4-aminopyridine in vitro epilepsy model analyzed with a perforated multi-electrode array. Neuropharmacology 60:1142–1153. https://doi.org/10.1016/j.neuropharm.2010.10.007

    CAS  Article  PubMed  Google Scholar 

  15. Gonzalez-Sulser A, Wang J, Queenan BN et al (2012) Hippocampal neuron firing and local field potentials in the in vitro 4-aminopyridine epilepsy model. J Neurophysiol 108:2568–2580. https://doi.org/10.1152/jn.00363.2012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Kinboshi M, Ikeda A, Ohno Y (2020) Role of astrocytic inwardly rectifying potassium (Kir) 4.1 channels in Epileptogenesis. Front Neurol. https://doi.org/10.3389/fneur.2020.626658

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kovac S, Walker MC (2013) Neuropeptides in epilepsy. Neuropeptides 47:467–475. https://doi.org/10.1016/j.npep.2013.10.015

    CAS  Article  PubMed  Google Scholar 

  18. Ledri M, Sorensen AT, Madsen MG et al (2015) Differential effect of neuropeptides on excitatory synaptic transmission in human epileptic hippocampus. J Neurosci 35:9622–9631. https://doi.org/10.1523/JNEUROSCI.3973-14.2015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Lyu R-M, Huang X-F, Zhang Y et al (2013) Phoenixin: a novel peptide in rodent sensory ganglia. Neuroscience 250:622–631. https://doi.org/10.1016/j.neuroscience.2013.07.057

    CAS  Article  PubMed  Google Scholar 

  20. Ma H, Su D, Wang Q et al (2020) Phoenixin 14 inhibits ischemia/reperfusion-induced cytotoxicity in microglia. Arch Biochem Biophys 689:108411. https://doi.org/10.1016/j.abb.2020.108411

    CAS  Article  PubMed  Google Scholar 

  21. Mcilwraith EK, Belsham DD (2018) Phoenixin: uncovering its receptor, signaling and functions. Acta Pharmacol Sin 39:774–778. https://doi.org/10.1038/aps.2018.13

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Nguyen XP, Nakamura T, Osuka S et al (2019) Effect of the neuropeptide phoenixin and its receptor GPR173 during folliculogenesis. Reproduction 158:25–34. https://doi.org/10.1530/REP-19-0025

    CAS  Article  PubMed  Google Scholar 

  23. Pinheiro Da Silva F, MacHado MCC, Velasco IT (2013) Neuropeptides in sepsis: from brain pathology to systemic inflammation. Peptides 44:135–138. https://doi.org/10.1016/j.peptides.2013.03.029

    CAS  Article  PubMed  Google Scholar 

  24. Prinz P, Scharner S, Friedrich T et al (2017) Central and peripheral expression sites of phoenixin-14 immunoreactivity in rats. Biochem Biophys Res Commun 493:195–201. https://doi.org/10.1016/j.bbrc.2017.09.048

    CAS  Article  PubMed  Google Scholar 

  25. Qian J, Saggau P (1999) Modulation of transmitter release by action potential duration at the hippocampal CA3-CA1 synapse. J Neurophysiol 81:288–298. https://doi.org/10.1152/jn.1999.81.1.288

    CAS  Article  PubMed  Google Scholar 

  26. Sagar SM, Flint Beal M, Marshall PE et al (1984) Implications of neuropeptides in neurological diseases. Peptides 5:255–262. https://doi.org/10.1016/0196-9781(84)90284-5

    CAS  Article  PubMed  Google Scholar 

  27. Schalla M, Stengel A (2018) Phoenixin—a pleiotropic gut-brain peptide. Int J Mol Sci 19:1726. https://doi.org/10.3390/ijms19061726

    CAS  Article  PubMed Central  Google Scholar 

  28. Staley KJ, Dudek FE (2006) Interictal spikes and epileptogenesis. epilepsy. Currents 6:199–202. https://doi.org/10.1111/j.1535-7511.2006.00145.x

    Article  Google Scholar 

  29. Stein LM, Tullock CW, Mathews SK et al (2016) Hypothalamic action of phoenixin to control reproductive hormone secretion in females: importance of the orphan G protein-coupled receptor Gpr173. Am J Physiol Regul Integr Comp Physiol 311:R489–R496. https://doi.org/10.1152/ajpregu.00191.2016

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stein LM, Haddock CJ, Samson WK et al (2018) The phoenixins: from discovery of the hormone to identification of the receptor and potential physiologic actions. Peptides 106:45–48. https://doi.org/10.1016/j.peptides.2018.06.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Treen AK, Luo V, Belsham DD (2016) Phoenixin activates immortalized GnRH and Kisspeptin neurons through the novel receptor GPR173. Mol Endocrinol 30:872–888. https://doi.org/10.1210/me.2016-1039

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. van den Pol AN (2012) Neuropeptide transmission in brain circuits. Neuron 76:98–115. https://doi.org/10.1016/j.neuron.2012.09.014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Yuan T, Sun Z, Zhao W et al (2017) Phoenixin: a newly discovered peptide with multi-functions. Protein Pept Lett. https://doi.org/10.2174/0929866524666170207154417

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ömer Faruk Kalkan.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Data availability statement

Our manuscript has no associated data.

Ethical standards

The study was ethically approved and registered by Karadeniz Technical University Faculty of Medicine, experimental animal ethics committee (Protocol nr: 2020/4).

Consent for publication

All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Bill J Yates.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalkan, Ö.F., Şahin, Z., Öztürk, H. et al. Phoenixin-14 reduces the frequency of interictal-like events in mice brain slices. Exp Brain Res 239, 2841–2849 (2021). https://doi.org/10.1007/s00221-021-06179-5

Download citation

Keywords

  • Extracellular recording
  • Phoenixin
  • Epileptiform activity
  • Entorhinal cortex
  • Hippocampus