Skip to main content
Log in

Astrocytes and Epilepsy

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Changes in astrocyte channels, transporters, and metabolism play a critical role in seizure generation and epilepsy. In particular, alterations in astrocyte potassium, glutamate, water and adenosine homeostasis and gap junctional coupling have all been associated with hyperexcitability and epileptogenesis (largely in temporal lobe epilepsy). Distinct astrocytic changes have also been identified in other types of epilepsy, such as tuberous sclerosis, tumor-associated epilepsy and post-traumatic epilepsy. Together, the emerging literature on astrocytes and epilepsy provides powerful rationale for distinct new therapeutic targets that are astrocyte-specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from: Benarroch E. 2007. Aquaporin-4, homeostasis, and neurologic disease. Neurology 69:2266–2268 (Fig. 1)

Similar content being viewed by others

References

  1. Clossen BL, Reddy DS (2017) Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy. Biochim Biophys Acta Mol Basis Dis 1863:1519–1538

    Article  CAS  PubMed  Google Scholar 

  2. Lekoubou A, Bishu KG, Ovbiagele B (2018) Nationwide trends in medical expenditures among adults with epilepsy: 2003–2014. J Neurol Sci 384:113–120

    Article  PubMed  Google Scholar 

  3. Kwan P, Schachter SC, Brodie MJ (2011) Drug-resistant epilepsy. N Engl J Med 365:919–926

    Article  CAS  PubMed  Google Scholar 

  4. Schmidt D, Löscher W (2005) Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms. Epilepsia 46:858–877

    Article  CAS  PubMed  Google Scholar 

  5. Stafstrom CE (2010) Mechanisms of action of antiepileptic drugs: the search for synergy. Curr Opin Neurol 23:157–163

    Article  CAS  PubMed  Google Scholar 

  6. Meldrum BS, Rogawski MA (2007) Molecular targets for antiepileptic drug development. Neurotherapeutics 4:18–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bootsma HP, Ricker L, Hekster YA, Hulsman J, Lambrechts D, Majoie M, Schellekens A, de Krom M, Aldenkamp AP (2009) The impact of side effects on long-term retention in three new antiepileptic drugs. Seizure 18:327–331

    Article  PubMed  Google Scholar 

  8. Ransom B, Behar T, Nedergaard M (2003) New roles for astrocytes (stars at last). Trends Neurosci 26:520–522

    Article  CAS  PubMed  Google Scholar 

  9. Binder DK, Nagelhus EA, Ottersen OP (2012) Aquaporin-4 and epilepsy. Glia 60:1203–1214

    Article  PubMed  Google Scholar 

  10. Wallraff A, Köhling R, Heinemann U, Theis M, Willecke K, Steinhäuser C (2006) The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci 26:5438–5447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Binder DK, Steinhäuser C (2006) Functional changes in astroglial cells in epilepsy. Glia 54:358–368

    Article  PubMed  Google Scholar 

  12. Clasadonte J, Haydon PG (2012) Astrocytes and epilepsy. In: Noebles JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper's basic mechanisms of the epilepsies, 4th edn, p 19

    Google Scholar 

  13. Friedman A, Kaufer D, Heinemann U (2009) Blood-brain barrier breakdown-inducing astrocytic transformation: novel targets for the prevention of epilepsy. Epilepsy Res 85:142–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tian G, Azmi H, Takano T, Xu Q, Peng W, Lin J, Oberheim N, Lou N, Zielke R, Kang J, Nedergaard M (2005) An astrocytic basis of epilepsy. Nat Med 11:973–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seifert G, Carmignoto G, Steinhäuser C (2010) Astrocyte dysfunction in epilepsy. Brain Res Rev 63:212–221

    Article  CAS  PubMed  Google Scholar 

  16. Seifert G, Schilling K, Steinhäuser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194–206

    Article  CAS  PubMed  Google Scholar 

  17. Boison D, Steinhauser C (2018) Epilepsy and astrocyte energy metabolism. Glia 66:1235–1243

    Article  PubMed  Google Scholar 

  18. Beenhakker MP, Huguenard JR (2010) Astrocytes as gatekeepers of GABAB receptor function. J Neurosci 30:15262–15276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang F, Smith NA, Xu Q, Fujita T, Baba A, Matsuda T, Takano T, Bekar L, Nedergaard M (2012) Astrocytes modulate neural network activity by Ca2+-dependent uptake of extracellular K+. Sci Signal 5:ra26

    Article  PubMed  PubMed Central  Google Scholar 

  20. Santello M, Bezzi P, Volterra A (2011) TNFalpha controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 69:988–1001

    Article  CAS  PubMed  Google Scholar 

  21. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555

    Article  CAS  PubMed  Google Scholar 

  22. Volterra A, Steinhäuser C (2004) Glial modulation of synaptic transmission in the hippocampus. Glia 47:249–257

    Article  PubMed  Google Scholar 

  23. Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63

    Article  CAS  PubMed  Google Scholar 

  24. Heinemann U, Jauch GR, Schulze JK, Kivi A, Eilers A, Kovacs R, Lehmann TN (2000) Alterations of glial cell functions in temporal lobe epilepsy. Epilepsia 41:S285–S189

    Article  Google Scholar 

  25. Bedner P, Dupper A, Huttmann K, Muller J, Herde MK, Dublin P, Deshpande T, Schramm J, Haussler U, Haas CA, Henneberger C, Theis M, Steinhäuser C (2015) Astrocyte uncoupling as a cause of human temporal lobe epilepsy. Brain 138:1208–1222

    Article  PubMed  PubMed Central  Google Scholar 

  26. Oberheim NA, Tian GF, Han X, Peng W, Takano T, Ransom B, Nedergaard M (2008) Loss of astrocytic domain organization in the epileptic brain. J Neurosci 28:3264–3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aronica E, Zurolo E, Iyer A, de Groot M, Anink J, Carbonell C, van Vliet EA, Baayen JC, Boison D, Gorter JA (2011) Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia 52:1645–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coulter DA, Eid T (2012) Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60:1215–1226

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hubbard JA, Szu JI, Yonan JM, Binder DK (2016) Regulation of astrocyte glutamate transporter-1 (GLT1) and aquaporin-4 (AQP4) expression in a model of epilepsy. Exp Neurol 283:85–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee DJ, Hsu MS, Seldin MM, Arellano JL, Binder DK (2012) Decreased expression of the glial water channel aquaporin-4 in the intrahippocampal kainic acid model of epileptogenesis. Exp Neurol 235:246–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Steinhäuser C, Seifert G (2002) Glial membrane channels and receptors in epilepsy: imact for generation and spread of seizure activity. Eur J Pharmacol 447:227–237

    Article  PubMed  Google Scholar 

  32. de Lanerolle NC, Lee T (2005) New facets of the neuropathology and molecular profile of human temporal lobe epilepsy. Epilepsy Behav 7:190–203

    Article  PubMed  Google Scholar 

  33. Hinterkeuser S, Schröder W, Hager G, Seifert G, Blümcke I, Elger CE, Schramm J, Steinhäuser C (2000) Astrocytes in the hippocampus of patients with temporal lobe epilepsy display changes in potassium conductances. Eur J Neurosci 12:2087–2096

    Article  CAS  PubMed  Google Scholar 

  34. Kivi A, Lehmann TN, Kovács R, Eilers A, Jauch R, Meencke HJ, von Deimling A, Heinemann U, Gabriel S (2000) Effects of barium on stimulus-induced rises of [K+]o in human epileptic non-sclerotic and sclerotic hippocampal area CA1. Eur J Neurosci 12:2039–2048

    Article  CAS  PubMed  Google Scholar 

  35. Pekny M, Pekna M, Messing A, Steinhauser C, Lee JM, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131:323–345

    Article  CAS  PubMed  Google Scholar 

  36. Verkhratsky A, Zorec R, Parpura V (2017) Stratification of astrocytes in healthy and diseased brain. Brain Pathol 27:629–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heinemann U, Gabriel S, Jauch R, Schulze K, Kivi A, Eilers A, Kovacs R, Lehmann TN (2000) Alterations of glial cell function in temporal lobe epilepsy. Epilepsia 41(Suppl 6):S185–S189

    Article  PubMed  Google Scholar 

  38. Steinhäuser C, Seifert G (2002) Glial membrane channels and receptors in epilepsy: impact for generation and spread of seizure activity. Eur J Pharmacol 447:227–237

    Article  PubMed  Google Scholar 

  39. Schwartzkroin PA, Baraban SC, Hochman DW (1998) Osmolarity, ionic flux, and changes in brain excitability. Epilepsy Res 32:275–285

    Article  CAS  PubMed  Google Scholar 

  40. Andrew RD, Fagan M, Ballyk BA, Rosen AS (1989) Seizure susceptibility and the osmotic state. Brain Res 498:175–180

    Article  CAS  PubMed  Google Scholar 

  41. Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118:3225–3232

    Article  CAS  PubMed  Google Scholar 

  42. Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159–163

    Article  CAS  PubMed  Google Scholar 

  43. Papadopoulos MC, Manley GT, Krishna S, Verkman AS (2004) Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 18:1291–1293

    Article  CAS  PubMed  Google Scholar 

  44. Strohschein S, Huttmann K, Gabriel S, Binder DK, Heinemann U, Steinhäuser C (2011) Impact of aquaporin-4 channels on K+ buffering and gap junction coupling in the hippocampus. Glia 59:973–980

    Article  PubMed  Google Scholar 

  45. Binder DK, Yao X, Sick TJ, Verkman AS, Manley GT (2006) Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia 53:631–636

    Article  PubMed  Google Scholar 

  46. Lee TS, Eid T, Mane S, Kim JH, Spencer DD, Ottersen OP, de Lanerolle NC (2004) Aquaporin-4 is increased in the sclerotic hippocampus in human temporal lobe epilepsy. Acta Neuropathol (Berl) 108:493–502

    Article  CAS  Google Scholar 

  47. Eid T, Lee TS, Thomas MJ, Amiry-Moghaddam M, Bjornsen LP, Spencer DD, Agre P, Ottersen OP, de Lanerolle NC (2005) Loss of perivascular aquaporin 4 may underlie deficient water and K+ homeostasis in the human epileptogenic hippocampus. Proc Natl Acad Sci U S A 102:1193–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim JE, Ryu HJ, Yeo SI, Seo CH, Lee BC, Choi IG, Kim DS, Kang TC (2009) Differential expressions of aquaporin subtypes in astroglia in the hippocampus of chronic epileptic rats. Neuroscience 163:781–789

    Article  CAS  PubMed  Google Scholar 

  49. Kim JE, Yeo SI, Ryu HJ, Kim MJ, Kim DS, Jo SM, Kang TC (2010) Astroglial loss and edema formation in the rat piriform cortex and hippocampus following pilocarpine-induced status epilepticus. J Comp Neurol 518:4612–4628

    Article  PubMed  Google Scholar 

  50. Alvestad S, Hammer J, Hoddevik EH, Skare O, Sonnewald U, Amiry-Moghaddam M, Ottersen OP (2013) Mislocalization of AQP4 precedes chronic seizures in the kainate model of temporal lobe epilepsy. Epilepsy Res 105:30–41

    Article  CAS  PubMed  Google Scholar 

  51. Verkhratsky A, Rose CR (2020) Na(+)-dependent transporters: the backbone of astroglial homeostatic function. Cell Calcium 85:102136

    Article  CAS  PubMed  Google Scholar 

  52. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    Article  CAS  PubMed  Google Scholar 

  53. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686

    Article  CAS  PubMed  Google Scholar 

  54. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  55. Sugimoto J, Tanaka M, Sugiyama K, Ito Y, Aizawa H, Soma M, Shimizu T, Mitani A, Tanaka K (2018) Region-specific deletions of the glutamate transporter GLT1 differentially affect seizure activity and neurodegeneration in mice. Glia 66:777–788

    Article  PubMed  Google Scholar 

  56. Mathern GW, Mendoza D, Lozada A, Pretorius JK, Dehnes Y, Danbolt NC, Nelson N, Leite JP, Chimelli L, Born DE, Sakamoto AC, Assirati JA, Fried I, Peacock WJ, Ojemann GA, Adelson PD (1999) Hippocampal GABA and glutamate transporter immunoreactivity in patients with temporal lobe epilepsy. Neurology 52:453–472

    Article  CAS  PubMed  Google Scholar 

  57. Proper EA, Hoogland G, Kappen SM, Jansen GH, Rensen MG, Schrama LH, van Veelen CW, van Rijen PC, van Nieuwenhuizen O, Gispen WH, de Graan PN (2002) Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 125:32–43

    Article  CAS  PubMed  Google Scholar 

  58. During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610

    Article  CAS  PubMed  Google Scholar 

  59. Peterson AR, Binder DK (2019) Regulation of synaptosomal GLT-1 and GLAST during epileptogenesis. Neuroscience 411:185–201

    Article  CAS  PubMed  Google Scholar 

  60. Clarkson C, Smeal RM, Hasenoehrl MG, White JA, Rubio ME, Wilcox KS (2020) Ultrastructural and functional changes at the tripartite synapse during epileptogenesis in a model of temporal lobe epilepsy. Exp Neurol 326:113196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Eid T, Thomas MJ, Spencer DD, Runden-Pran E, Lai JC, Malthankar GV, Kim JH, Danbolt NC, Ottersen OP, de Lanerolle NC (2004) Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363:28–37

    Article  CAS  PubMed  Google Scholar 

  62. Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Glutamate-glutamine cycling in the epileptic human hippocampus. Epilepsia 43:703–710

    Article  CAS  PubMed  Google Scholar 

  63. Albright B, Dhaher R, Wang H, Harb R, Lee TW, Zaveri H, Eid T (2017) Progressive neuronal activation accompanies epileptogenesis caused by hippocampal glutamine synthetase inhibition. Exp Neurol 288:122–133

    Article  CAS  PubMed  Google Scholar 

  64. Zhou Y, Dhaher R, Parent M, Hu QX, Hassel B, Yee SP, Hyder F, Gruenbaum SE, Eid T, Danbolt NC (2019) Selective deletion of glutamine synthetase in the mouse cerebral cortex induces glial dysfunction and vascular impairment that precede epilepsy and neurodegeneration. Neurochem Int 123:22–33

    Article  CAS  PubMed  Google Scholar 

  65. Eid T, Lee TW, Patrylo P, Zaveri HP (2019) Astrocytes and glutamine synthetase in epileptogenesis. J Neurosci Res 97:1345–1362

    Article  CAS  PubMed  Google Scholar 

  66. Meme W, Calvo CF, Froger N, Ezan P, Amigou E, Koulakoff A, Giaume C (2006) Proinflammatory cytokines released from microglia inhibit gap junctions in astrocytes: potentiation by beta-amyloid. FASEB J 20:494–496

    Article  CAS  PubMed  Google Scholar 

  67. Deshpande T, Li T, Herde MK, Becker A, Vatter H, Schwarz MK, Henneberger C, Steinhäuser C, Bedner P (2017) Subcellular reorganization and altered phosphorylation of the astrocytic gap junction protein connexin43 in human and experimental temporal lobe epilepsy. Glia 65:1809–1820

    Article  PubMed  Google Scholar 

  68. Khan D, Dupper A, Deshpande T, Graan PN, Steinhauser C, Bedner P (2016) Experimental febrile seizures impair interastrocytic gap junction coupling in juvenile mice. J Neurosci Res 94:804–813

    Article  CAS  PubMed  Google Scholar 

  69. Deshpande T, Li T, Henning L, Wu Z, Muller J, Seifert G, Steinhäuser C, Bedner P (2020) Constitutive deletion of astrocytic connexins aggravates kainate-induced epilepsy. Glia 68:2136–2147

    Article  PubMed  Google Scholar 

  70. Boison D, Chen J, Fredholm BB (2010) Adenosine signalling and function in glial cells. Cell Death Differentiation 17(7)

  71. Boison D (2012) Adenosine dysfunction in epilepsy. Glia 60:1234–1243

    Article  PubMed  Google Scholar 

  72. Gouder N, Scheurer L, Fritschy J, Boison D (2004) Overexpression of adenosine kinase in epileptic hippocampus contributes to epileptogenesis. J Neurosci 24:692–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discovery 5:247–264

    Article  CAS  PubMed  Google Scholar 

  74. Spedding M, William M (1996) Developments in purine and pyridimidine receptor-based therapeutics. Drug Dev Res 39:436–441

    Article  CAS  Google Scholar 

  75. Williams M (1999) Development in P2 receptor targeted therapeutics. Progr Brain Res 120:93–106

    Article  CAS  Google Scholar 

  76. Williams M, Jarvis MF (2000) Purinergic and pyrimidinergic receptors as potential drug targets. Biochem Pharmacol 59:1173–1185

    Article  CAS  PubMed  Google Scholar 

  77. Anschel DJ, Ortega EL, Kraus AC, Fisher RS (2004) Focally injected adenosine prevents seizures in the rat. Exp Neurol 190:544–547

    Article  CAS  PubMed  Google Scholar 

  78. Li T, Ren G, Lusardi T, Wilz A, Lan JQ, Iwasato T, Itohara S, Simon RP, Boison D (2008) Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. J Clin Invest 118:571–582

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wilz A, Pritchard EM, Li T, Lan J, Kaplan DL, Boison D (2008) Silk polymer based adenosine release: therapeutic potential for epilepsy. Biomaterials 29:3609–3616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Huber A, Padrun V, Déglon N, Aebischer P, Möhler H, Boison D (2001) Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. PNAS 98:7611–7616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Boison D, Stewart K (2009) Therapeutic epilepsy research: from pharmacological rationale to focal adenosine augmentaiton. Biochem Pharmacol 78:1428–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Boison D (2016) Adenosinergic signaling in epilepsy. Neuropharmacology 104:131–139

    Article  CAS  PubMed  Google Scholar 

  83. Williams-Karnesky RL, Sandau US, Lusardi TA, Lytle NK, Farrell JM, Pritchard EM, Kaplan DL, Boison D (2013) Epigenetic changes induced by adenosine augmentation therapy prevent epileptogenesis. J Clin Invest 123:3552–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Uhlmann EJ, Wong M, Baldwin RL, Bajenaru ML, Onda H, Kwiatkowski DJ, Yamada K, Gutmann DH (2002) Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 52:285–296

    Article  CAS  PubMed  Google Scholar 

  85. Wong M, Ess KC, Uhlmann EJ, Jansen LA, Li W, Crino PB, Mennerick S, Yamada KA, Gutmann DH (2003) Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Ann Neurol 54:251–256

    Article  CAS  PubMed  Google Scholar 

  86. Jansen LA, Uhlmann EJ, Crino PB, Gutmann DH, Wong M (2005) Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis complex-1-deficient astrocytes. Epilepsia 46:1871–1880

    Article  CAS  PubMed  Google Scholar 

  87. Zou J, Zhang B, Gutmann DH, Wong M (2017) Postnatal reduction of tuberous sclerosis complex 1 expression in astrocytes and neurons causes seizures in an age-dependent manner. Epilepsia 58:2053–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Luyken C, Blumcke I, Fimmers R, Urbach H, Elger CE, Wiestler OD, Schramm J (2003) The spectrum of long-term epilepsy-associated tumors: long-term seizure and tumor outcome and neurosurgical aspects. Epilepsia 44:822–830

    Article  PubMed  Google Scholar 

  89. Bianchi L, De Micheli E, Bricolo A, Ballini C, Fattori M, Venturi C, Pedata F, Tipton KF, Della Corte L (2004) Extracellular levels of amino acids and choline in human high grade gliomas: an intraoperative microdialysis study. Neurochem Res 29:325–334

    Article  CAS  PubMed  Google Scholar 

  90. Maas S, Patt S, Schrey M, Rich A (2001) Underediting of glutamate receptor GluR-B mRNA in malignant gliomas. Proc Natl Acad Sci U S A 98:14687–14692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ye ZC, Sontheimer H (1999) Glioma cells release excitotoxic concentrations of glutamate. Cancer Res 59:4383–4391

    CAS  PubMed  Google Scholar 

  92. Ye ZC, Rothstein JD, Sontheimer H (1999) Compromised glutamate transport in human glioma cells: reduction-mislocalization of sodium-dependent glutamate transporters and enhanced activity of cystine-glutamate exchange. J Neurosci 19:10767–10777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bordey A, Sontheimer H (1998) Electrophysiological properties of human astrocytic tumor cells in situ: enigma of spiking glial cells. J Neurophysiol 79:2782–2793

    Article  CAS  PubMed  Google Scholar 

  94. Olsen ML, Sontheimer H (2004) Mislocalization of Kir channels in malignant glia. Glia 46:63–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Robert SM, Buckingham SC, Campbell SL, Robel S, Holt KT, Ogunrinu-Babarinde T, Warren PP, White DM, Reid MA, Eschbacher JM, Berens ME, Lahti AC, Nabors LB, Sontheimer H (2015) SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Sci Transl Med 7:289ra286

    Article  CAS  Google Scholar 

  96. Annegers JF, Hauser WA, Coan SP, Rocca WA (1998) A population-based study of seizures after traumatic brain injuries. N Engl J Med 338:20–24

    Article  CAS  PubMed  Google Scholar 

  97. Caveness WF, Meirowsky AM, Rish BL, Mohr JP, Kistler JP, Dillon JD, Weiss GH (1979) The nature of posttraumatic epilepsy. J Neurosurg 50:545–553

    Article  CAS  PubMed  Google Scholar 

  98. Temkin NR, Dikmen SS, Wilensky AJ, Keihm J, Chabal S, Winn HR (1990) A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures. N Engl J Med 323:497–502

    Article  CAS  PubMed  Google Scholar 

  99. Temkin NR, Dikmen SS, Anderson GD, Wilensky AJ, Holmes MD, Cohen W, Newell DW, Nelson P, Awan A, Winn HR (1999) Valproate therapy for prevention of posttraumatic seizures: a randomized trial. J Neurosurg 91:593–600

    Article  CAS  PubMed  Google Scholar 

  100. D'Ambrosio R, Perucca E (2004) Epilepsy after head injury. Curr Opin Neurol 17:731–735

    Article  PubMed  PubMed Central  Google Scholar 

  101. Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK (1992) Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J Neurosci 12:4846–4853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Golarai G, Greenwood AC, Feeney DM, Connor JA (2001) Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J Neurosci 21:8523–8537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Santhakumar V, Ratzliff AD, Jeng J, Toth Z, Soltesz I (2001) Long-term hyperexcitability in the hippocampus after experimental head trauma. Ann Neurol 50:708–717

    Article  CAS  PubMed  Google Scholar 

  104. D'Ambrosio R, Maris DO, Grady MS, Winn HR, Janigro D (1999) Impaired K+ homeostasis and altered electrophysiological properties of post-traumatic hippocampal glia. J Neurosci 19:8152–8162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Samuelsson C, Kumlien E, Flink R, Lindholm D, Ronne-Engstrom E (2000) Decreased cortical levels of astrocytic glutamate transport protein GLT-1 in a rat model of posttraumatic epilepsy. Neurosci Lett 289:185–188

    Article  CAS  PubMed  Google Scholar 

  106. Hunt RF, Scheff SW, Smith BN (2009) Posttraumatic epilepsy after controlled cortical impact injury in mice. Exp Neurol 215:243–252

    Article  PubMed  Google Scholar 

  107. Szu JI, Chaturvedi S, Patel DD, Binder DK (2020) Aquaporin-4 dysregulation in a controlled cortical impact injury model of posttraumatic epilepsy. Neuroscience 428:140–153

    Article  CAS  PubMed  Google Scholar 

  108. Seiffert E, Dreier JP, Ivens S, Bechmann I, Tomkins O, Heinemann U, Friedman A (2004) Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci 24:7829–7836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Weissberg I, Wood L, Kamintsky L, Vazquez O, Milikovsky DZ, Alexander A, Oppenheim H, Ardizzone C, Becker A, Frigerio F, Vezzani A, Buckwalter MS, Huguenard JR, Friedman A, Kaufer D (2015) Albumin induces excitatory synaptogenesis through astrocytic TGF-beta/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis 78:115–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bar-Klein G, Cacheaux LP, Kamintsky L, Prager O, Weissberg I, Schoknecht K, Cheng P, Kim SY, Wood L, Heinemann U, Kaufer D, Friedman A (2014) Losartan prevents acquired epilepsy via TGF-beta signaling suppression. Ann Neurol 75:864–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Friedman A, Bar-Klein G, Serlin Y, Parmet Y, Heinemann U, Kaufer D (2014) Should losartan be administered following brain injury? Expert Rev Neurother 14:1365–1375

    Article  CAS  PubMed  Google Scholar 

  112. Murphy TR, Binder DK, Fiacco TA (2017) Turning down the volume: astrocyte volume change in the generation and termination of epileptic seizures. Neurobiol Dis 104:24–32

    Article  PubMed  PubMed Central  Google Scholar 

  113. Degen J, Dublin P, Zhang J, Dobrowolski R, Jokwitz M, Karram K, Trotter J, Jabs R, Willecke K, Steinhauser C, Theis M (2012) Dual reporter approaches for identification of Cre efficacy and astrocyte heterogeneity. FASEB J 26:4576–4583

    Article  CAS  PubMed  Google Scholar 

  114. Hoft S, Griemsmann S, Seifert G, Steinhäuser C (2014) Heterogeneity in expression of functional ionotropic glutamate and GABA receptors in astrocytes across brain regions: insights from the thalamus. Philos Trans R Soc Lond B Biol Sci 369:20130602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Griemsmann S, Hoft SP, Bedner P, Zhang J, von Staden E, Beinhauer A, Degen J, Dublin P, Cope DW, Richter N, Crunelli V, Jabs R, Willecke K, Theis M, Seifert G, Kettenmann H, Steinhauser C (2015) Characterization of panglial gap junction networks in the thalamus, neocortex, and hippocampus reveals a unique population of glial cells. Cereb Cortex 25:3420–3433

    Article  PubMed  Google Scholar 

  116. Hüttmann K, Sadgrove M, Wallraff A, Hinterkeuser S, Kirchhoff F, Steinhäuser C, Gray WP (2003) Seizures preferentially stimulate proliferation of radial glia-like astrocytes in the adult dentate gyrus: functional and immunocytochemical analysis. Eur J Neurosci 18:2769–2778

    Article  PubMed  Google Scholar 

  117. Parent JM, von dem Bussche N, Lowenstein DH (2006) Prolonged seizures recruit caudal subventricular zone glial progenitors into the injured hippocampus. Hippocampus 16:321–328

    Article  CAS  PubMed  Google Scholar 

  118. Hubbard JA, Binder DK (2016) Astrocytes and epilepsy. Elsevier, Academic Press, Amsterdam, Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devin K. Binder.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in the preparation of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In Honor of Prof Vladimir Parpura.

Invited chapter for special issue of Neurochemical Research titled “Astroglia in healthy and diseased brain” honoring Dr. Vladimir Parpura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binder, D.K., Steinhäuser, C. Astrocytes and Epilepsy. Neurochem Res 46, 2687–2695 (2021). https://doi.org/10.1007/s11064-021-03236-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03236-x

Keywords

Navigation