Skip to main content

Advertisement

Log in

High-beta/low-gamma frequency activity reflects top-down predictive coding during a spatial working memory test

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Numerous mental health disorders are characterized by cognitive impairments that result in poor vocational and social outcomes. Among the cognitive domains commonly affected, working memory deficits have been noted in patients with attention-deficit/hyperactivity disorder (Martinussen et al. in J Am Acad Child Adolesc Psychiatry 44:377–384, 2005), post-traumatic stress disorder (Honzel et al. in Cogn Affect Behav Neurosci 14:792–804, 2014), and consistently with schizophrenia patients (Callicott et al. in Cereb Cortex 10:1078–1092, 2000; Lewis et al. in Front Hum Neurosci 10:85, 2005; Amann et al. in Brain Res Bull 83:147–161, 2010; Limongi et al. in Schizophr Res 197:386–391, 2018). Oscillations in neural activity from electroencephalogram (EEG) recordings are decomposed by frequency, and band-specific decreases in gamma power (> 30 Hz) have been correlated with working memory ability. This study examined within-subject changes in power of frequency-specific bands during sample versus choice trials during a spatial working memory paradigm (T-maze). EEG was recorded using a relatively novel wireless EEG telemetry system fully implanted within the mouse, enabling uninhibited movement during behavioral tasks. No significant differences were found between sample and correct choice phases in the alpha, theta or gamma frequency ranges. Evoked power was significantly higher during the choice phase than the sample phase in the high-beta/low-gamma frequency range. This frequency range has been implicated in the propagation of cortical predictions to lower levels of stimuli encoding in a top-down hierarchical manner. Results suggest there is an increase in brain activity during correct trials when the mouse enters the opposite arm during the choice phase compared to the sample phase, likely due to prediction error resulting from a discrepancy between present and prior experience. Future studies should identify specific cortical networks involved and investigate neural activity at the neuronal level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amann LC, Gandal MJ, Halene TB, Ehrlichman RS, White SL, McCarren HS, Siegel SJ (2010) Mouse behavioral endophenotypes for schizophrenia. Brain Res Bull 83:147–161

    Article  PubMed  Google Scholar 

  • Arnal LH, Giraud AL (2012) Cortical oscillations and sensory predictions. Trends Cogn Sci 16:390–398

    Article  PubMed  Google Scholar 

  • Axmacher N, Mormann F, Fernandez G, Cohen MX, Elger CE, Fell J (2007) Sustained neural activity patterns during working memory in the human medial temporal lobe. J Neurosci 27:7807–7816

    Article  CAS  PubMed  Google Scholar 

  • Barbey AK, Colom R, Grafman J (2013) Dorsolateral prefrontal contributions to human intelligence. Neuropsychologia 51:1361–1369

    Article  PubMed  Google Scholar 

  • Basar E, Basar-Eroglu C, Karakas S, Schurmann M (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39:241–248

    Article  CAS  PubMed  Google Scholar 

  • Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ (2012) Canonical microcircuits for predictive coding. Neuron 76:695–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billingslea EN, Tatard-Leitman VM, Anguiano J, Jutzeler CR, Suh J, Saunders JA, Morita S, Featherstone RE, Ortinski PI, Gandal MJ, Lin R, Liang Y, Gur RE, Carlson GC, Hahn CG, Siegel SJ (2014) Parvalbumin cell ablation of NMDA-R1 causes increased resting network excitability with associated social and self-care deficits. Neuropsychopharmacology 39:1603–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bressler SL, Richter CG (2015) Interareal oscillatory synchronization in top-down neocortical processing. Curr Opin Neurobiol 31:62–66

    Article  CAS  PubMed  Google Scholar 

  • Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R, Goldberg TE, Weinberger DR (2000) Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex 10:1078–1092

    Article  CAS  PubMed  Google Scholar 

  • Cohen MX, Elger CE, Ranganath C (2007) Reward expectation modulates feedback-related negativity and EEG spectra. Neuroimage 35:968–978

    Article  PubMed  PubMed Central  Google Scholar 

  • Deacon RM, Rawlins JN (2006) T-maze alternation in the rodent. Nat Protoc 1(1):7–12

    Article  PubMed  Google Scholar 

  • Dietrich A, Kanso R (2010) A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychol Bull 136:822–848

    Article  PubMed  Google Scholar 

  • Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23:475–483

    Article  CAS  PubMed  Google Scholar 

  • Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716

    Article  CAS  PubMed  Google Scholar 

  • Featherstone RE, Liang Y, Saunders JA, Tatard-Leitman VM, Ehrlichman RS, Siegel SJ (2012) Subchronic ketamine treatment leads to permanent changes in EEG, cognition and the astrocytic glutamate transporter EAAT2 in mice. Neurobiol Dis 47:338–346

    Article  CAS  PubMed  Google Scholar 

  • Featherstone RE, McMullen MF, Ward KR, Bang J, Xiao J, Siegel SJ (2015) EEG biomarkers of target engagement, therapeutic effect, and disease process. Ann N Y Acad Sci 1344:12–26

    Article  CAS  PubMed  Google Scholar 

  • Feige B, Aertsen A, Kristeva-Feige R (2000) Dynamic synchronization between multiple cortical motor areas and muscle activity in phasic voluntary movements. J Neurophysiol 84:2622–2629

    Article  CAS  PubMed  Google Scholar 

  • Friston K (2008) Hierarchical models in the brain. PLoS Comput Biol 4:e1000211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuster JM, Alexander GE (1971) Neuron activity related to short-term memory. Science 173:652–654

    Article  CAS  PubMed  Google Scholar 

  • HajiHosseini A, Holroyd CB (2015) Reward feedback stimuli elicit high-beta EEG oscillations in human dorsolateral prefrontal cortex. Sci Rep 5:13021

    Article  CAS  PubMed  Google Scholar 

  • HajiHosseini A, Rodriguez-Fornells A, Marco-Pallares J (2012) The role of beta-gamma oscillations in unexpected rewards processing. Neuroimage 60:1678–1685

    Article  PubMed  Google Scholar 

  • Herrmann CS, Frund I, Lenz D (2010) Human gamma-band activity: a review on cognitive and behavioral correlates and network models. Neurosci Biobehav Rev 34:981–992

    Article  PubMed  Google Scholar 

  • Honzel N, Justus T, Swick D (2014) Posttraumatic stress disorder is associated with limited executive resources in a working memory task. Cogn Affect Behav Neurosci 14:792–804

    Article  PubMed  PubMed Central  Google Scholar 

  • Howard MW, Rizzuto DS, Caplan JB, Madsen JR, Lisman J, Aschenbrenner-Scheibe R, Schulze-Bonhage A, Kahana MJ (2003) Gamma oscillations correlate with working memory load in humans. Cereb Cortex 13:1369–1374

    Article  PubMed  Google Scholar 

  • Jensen O, Kaiser J, Lachaux JP (2007) Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci 30:317–324

    Article  CAS  PubMed  Google Scholar 

  • Keefe RS, Roitman SE, Harvey PD, Blum CS, DuPre RL, Prieto DM, Davidson M, Davis KL (1995) A pen-and-paper human analogue of a monkey prefrontal cortex activation task: spatial working memory in patients with schizophrenia. Schizophr Res 17:25–33

    Article  CAS  PubMed  Google Scholar 

  • Kiesel A, Steinhauser M, Wendt M, Falkenstein M, Jost K, Philipp AM, Koch I (2010) Control and interference in task switching—a review. Psychol Bull 136:849–874

    Article  PubMed  Google Scholar 

  • Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324

    Article  CAS  PubMed  Google Scholar 

  • Lewis AG, Schoffelen JM, Schriefers H, Bastiaansen M (2016) A predictive coding perspective on beta oscillations during sentence-level language comprehension. Front Hum Neurosci 10:85

    Article  PubMed  PubMed Central  Google Scholar 

  • Limongi R, Silva AM, Gongora-Costa B (2015) Temporal prediction errors modulate task-switching performance. Front Psychol 6:1185

    Article  PubMed  PubMed Central  Google Scholar 

  • Limongi R, Bohaterewicz B, Nowicka M, Plewka A, Friston KJ (2018) Knowing when to stop: aberrant precision and evidence accumulation in schizophrenia. Schizophr Res. https://doi.org/10.1016/j.schres.2017.12.018

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinussen R, Hayden J, Hogg-Johnson S, Tannock R (2005) A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 44:377–384

    Article  PubMed  Google Scholar 

  • Mesulam M (2008) Representation, inference, and transcendent encoding in neurocognitive networks of the human brain. Ann Neurol 64:367–378

    Article  PubMed  Google Scholar 

  • Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202

    Article  CAS  PubMed  Google Scholar 

  • Moritz S, Goritz AS, Gallinat J, Schafschetzy M, Van Quaquebeke N, Peters MJ, Andreou C (2015) Subjective competence breeds overconfidence in errors in psychosis. A hubris account of paranoia. J Behav Ther Exp Psychiatry 48:118–124

    Article  PubMed  Google Scholar 

  • Muthukumaraswamy SD, Johnson BW (2004) Primary motor cortex activation during action observation revealed by wavelet analysis of the EEG. Clin Neurophysiol 115:1760–1766

    Article  PubMed  Google Scholar 

  • Parr T, Friston KJ (2017a) Uncertainty, epistemics and active inference. J R Soc Interface 14(136):20170376

    Article  PubMed  PubMed Central  Google Scholar 

  • Parr T, Friston KJ (2017b) Working memory, attention, and salience in active inference. Sci Rep 7:14678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlstein WM, Carter CS, Noll DC, Cohen JD (2001) Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. Am J Psychiatry 158:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Poljac E, Yeung N (2014) Dissociable neural correlates of intention and action preparation in voluntary task switching. Cereb Cortex 24:465–478

    Article  PubMed  Google Scholar 

  • Rauss K, Pourtois G (2013) What is bottom-up and what is top-down in predictive coding? Front Psychol 4:276

    Article  PubMed  PubMed Central  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J (1998) Induced gamma-band activity during the delay of a visual short-term memory task in humans. J Neurosci 18:4244–4254

    Article  CAS  PubMed  Google Scholar 

  • Tatard-Leitman VM, Jutzeler CR, Suh J, Saunders JA, Billingslea EN, Morita S, White R, Featherstone RE, Ray R, Ortinski PI, Banerjee A, Gandal MJ, Lin R, Alexandrescu A, Liang Y, Gur RE, Borgmann-Winter KE, Carlson GC, Hahn CG, Siegel SJ (2015) Pyramidal cell selective ablation of N-methyl-d-aspartate receptor 1 causes increase in cellular and network excitability. Biol Psychiatry 77:556–568

    Article  CAS  PubMed  Google Scholar 

  • van Pelt S, Heil L, Kwisthout J, Ondobaka S, van Rooij I, Bekkering H (2016) Beta- and gamma-band activity reflect predictive coding in the processing of causal events. Soc Cogn Affect Neurosci 11:973–980

    Article  PubMed  PubMed Central  Google Scholar 

  • Wager TD, Smith EE (2003) Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci 3:255–274

    Article  PubMed  Google Scholar 

  • Ward LM (2003) Synchronous neural oscillations and cognitive processes. Trends Cogn Sci 7:553–559

    Article  PubMed  Google Scholar 

Download references

Funding

Funding was provided by National Institutes of Health (Grant no. 1-P50-MH-096891-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Featherstone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R.V., Featherstone, R.E., Melynchenko, O. et al. High-beta/low-gamma frequency activity reflects top-down predictive coding during a spatial working memory test. Exp Brain Res 237, 1881–1888 (2019). https://doi.org/10.1007/s00221-019-05558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-019-05558-3

Keywords

Navigation