Skip to main content
Log in

TMS applied to V1 can facilitate reasoning

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Visual mental imagery is the subjective experience of seeing objects or events in front of the ‘inner eye’, although they are not actually present. Previous research indicates that (1) visual images help to remember what has been experienced in the past or when objects need to be inspected or manipulated, and (2) visual images are correlated with neural activity in early visual cortices, demonstrating a possible overlap between visual imagery and visual perception. However, recent research revealed that visual imagery can also disrupt cognitive processes and impede thinking. In this transcranial magnetic stimulation (TMS) experiment, participants had to solve relational reasoning problems that varied in their imageability (easy or difficult to visualize as a mental image). While solving the problems, eight 10 Hz pulses were either applied to primary visual cortex (V1) or a control site (Vertex). Our findings suggest a causal link between mental imagery, primary visual cortex, and reasoning with visual problems. Moreover, participants exhibited much lower error rates when TMS was applied to V1. We conclude that the disruption of visual images in primary visual cortex can facilitate reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In Sack et al. (2009) a power analyses revealed that in the fMRI-guided neuronavigation approach n = 5 participants are sufficient to reveal a significant behavioral effect; this number of necessary participants increases to n = 9 when employing MRI-guided neuronavigation—that is what we use in our experiment with a final sample of N = 10—it increases to n = 13 in case of TMS based on group Talairach coordinates, and to n = 47 with even weaker localization methods. The tasks were different from ours, but the results show that the number of participants in our study is sufficient for TMS studies in which MRI-guided neuronavigation is used for TMS coil positioning.

References

  • Adler JE, Rips LJ (eds) (2008) Reasoning: studies of human inference and its foundations. Cambridge University Press, Cambridge

    Google Scholar 

  • Andrews G, Halford GS, Chappell M, Maujean A, Shum DHK (2014) Planning following stroke: a relational complexity approach using the Tower of London. Front Hum Neurosci 8:1032. https://doi.org/10.3389/fnhum.2014.01032

    Article  PubMed  PubMed Central  Google Scholar 

  • Arditi A, Holtzman JD, Kosslyn SM (1988) Mental imagery and sensory experience in congenital blindness. Neuropsychologia 26(1):1–12. https://doi.org/10.1016/0028-3932(88)90026-7

    Article  PubMed  CAS  Google Scholar 

  • Bacon AM, Handley SJ (2010) Dyslexia and reasoning: the importance of visual processes. Br J Psychol 101:433–452. https://doi.org/10.1348/000712609X467314

    Article  PubMed  Google Scholar 

  • Bacon AM, Handley SJ, McDonald EL (2007) Reasoning and dyslexia: a spatial strategy may impede reasoning with visually rich information. Br J Psychol 98(1):79–92

    Article  PubMed  Google Scholar 

  • Bartolomeo P (2008) The neural correlates of visual mental imagery: an ongoing debate. Cortex 44:107–108

    Article  PubMed  Google Scholar 

  • Behrmann M (2000) The mind’s eye mapped onto the brain’s matter. Curr Dir Psychol Sci 9:50–54. https://doi.org/10.1111/1467-8721.00059

    Article  Google Scholar 

  • Bly BM, Kosslyn SM (1997) Functional anatomy of object recognition in humans: evidence from positron emission tomography and functional magnetic resonance imaging. Curr Opin Neurol 10(1):5–9

    Article  PubMed  CAS  Google Scholar 

  • Braine MDS, O’Brien DP (1998) Mental logic. Erlbaum, Mahwah

    Book  Google Scholar 

  • Cattaneo Z, Vecchi T, Pascual-Leone A, Silvanto J (2009) Contrasting early visual cortical activation states causally involved in visual imagery and short-term memory. Eur J Neurosci 30:1393–1400

    Article  PubMed  Google Scholar 

  • Cattaneo Z, Pisoni A, Papagno C, Silvanto J (2011) Modulation of visual cortical excitability by working memory: effect of luminance contrast of mental imagery. Front Psychol 2:29. https://doi.org/10.3389/fpsyg.2011.00029

    Article  PubMed  PubMed Central  Google Scholar 

  • Chambers D, Reisberg D (1985) Can mental images be ambiguous? J Exp Psychol Hum Percept Perform 11(3):317–328

    Article  Google Scholar 

  • Clement CA, Falmagne RJ (1986) Logical reasoning, world knowledge, and mental imagery: Interconnections in cognitive processes. Mem Cogn 14:299–307

    Article  CAS  Google Scholar 

  • Coetzee JP, Monti MM (2018) At the core of reasoning: dissociating deductive and non-deductive difficulty. Hum Brain Mapp 39(4):1850–1861

    Article  PubMed  Google Scholar 

  • Cohen MS, Kosslyn SM, Breiter HC, Di Girolamo GJ, Thompson WL et al (1996) Changes in cortical activity during mental rotation. A mapping study using functional MRI. Brain 119:89–100

    Article  PubMed  Google Scholar 

  • De Soto LB, London M, Handel MS (1965) Social reasoning and spatial paralogic. J Personal Soc Psychol 2:513–521

    Article  Google Scholar 

  • Deblieck C, Thompson B, Iacoboni M, Wu AD (2008) Correlation between motor and phosphine thresholds: a transcranial magnetic stimulation study. Hum Brain Mapp 29(6):662–670

    Article  PubMed  Google Scholar 

  • Devlin JT, Matthews PM, Rushworth MF (2003) Semantic processing in the left inferior prefrontal cortex: a combined functional magnetic resonance imaging and transcranial magnetic stimulation study. J Cogn Neurosci 15:71–84

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335

    Article  PubMed  Google Scholar 

  • Elkin-Frankston S, Fried PJ, Pascual-Leone A, Rushmore IIIRJ., Valero-Cabré A (2010) A novel approach for documenting phosphenes induced by transcranial magnetic stimulation. J Vis Exp 38:1762. https://doi.org/10.3791/1762

    Article  CAS  Google Scholar 

  • Franzmeier I, Hutton SB, Ferstl EC (2012) The role of the temporal role in contextual sentence integration: a single-pulse transcranial magnetic stimulation study. Cogn Neurosci 3(1):1–7. https://doi.org/10.1080/17588928.2011.556248

    Article  PubMed  Google Scholar 

  • Gazzo Castañeda LE, Knauff M (2013) Individual differences, imagery and the visual impedance effect. In: Knauff M, Pauen M, Sebanz N, Wachsmuth I (eds) Proceedings of the 35th Annual Conference of the Cognitive Science Society. Cognitive Science Society, Austin, pp 2374–2379

    Google Scholar 

  • Glenberg AM (1997) What memory is for. Behav Brain Sci 20:1–55

    PubMed  CAS  Google Scholar 

  • Goel V, Gold B, Kapur S, Houle S (1998) Neuroanatomical correlates of human reasoning. J Cogn Neurosci 10:293–302. https://doi.org/10.1162/089892998562744

    Article  PubMed  CAS  Google Scholar 

  • Goel V, Buchel C, Frith C, Dolan RJ (2000) Dissociation of mechanisms underlying syllogistic reasoning. NeuroImage 12:504–514

    Article  PubMed  CAS  Google Scholar 

  • Goel V, Navarrete G, Noveck IA, Prado J (2017) The reasoning brain: The interplay between cognitive neuroscience and theories of reasoning. Lausanne Front Media SA. https://doi.org/10.3389/978-2-88945-118-0

    Article  Google Scholar 

  • Gough PM, Nobre AC, Devlin JT (2005) Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. J Neurosci 25:8010–8016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Griffiths TL, Tenenbaum JB, Kemp C (2012) Bayesian inference. In: Holyoak KJ, Morrison RG (eds) Oxford Handbook of Thinking and Reasoning. Oxford University Press, Oxford

    Google Scholar 

  • Hagert G (1984) Modeling mental models: experiments in cognitive modeling of spatial reasoning. In: T O’Shea (ed) Advances in artificial intelligence. North Holland, Amsterdam, pp 179–188

    Google Scholar 

  • Hartwigsen G, Baumgaertner A, Price CJ, Koehnke M, Ulmer S, Siebner HR (2010) Phonological decisions require both the left and right supramarginal gyri. PNAS 107(38):16494–16499

    Article  PubMed  Google Scholar 

  • Hobeika L, Diard-Detoeuf C, Garcin B, Levy R, Volle E (2016) General and specialized brain correlates for analogical reasoning: A meta-analysis of functional imaging studies. Hum Brain Mapp 37:1953–1969

    Article  PubMed  Google Scholar 

  • Husain M, Nachev P (2007) Space and the parietal cortex. Trends Cogn Sci 11(1):30–36

    Article  PubMed  PubMed Central  Google Scholar 

  • Huttenlocher J (1968) Constructing spatial images: A strategy in reasoning. Psychol Rev 75:550–560

    Article  Google Scholar 

  • Ishai A (2010) Seeing with the mind’s eye: top-down, bottom-up, and conscious awareness. Biol Rep 2:34. https://doi.org/10.3410/B2-34

    Article  Google Scholar 

  • Johnson-Laird PN (2006) How we reason. Oxford University Press, Oxford

    Google Scholar 

  • Johnson-Laird PN, Byrne RMJ, Tabossi P (1989) Reasoning by model: The case of multiple quantifiers. Psychol Rev 96:658–673

    Article  Google Scholar 

  • Keel JC, Smith MJ, Wassermann EM (2001) A safety screening questionnaire for transcranial magnetic stimulation. Clin Neurophysiol 112:720

    Article  PubMed  CAS  Google Scholar 

  • Knauff M (2013) Space to reason—a spatial theory of human thought. MIT Press, Cambridge

    Book  Google Scholar 

  • Knauff M (2018) Supporting and hindering effects on rational reasoning. In: O Zlatkin-Troitschanskaia G, Wittum A, Dengel (eds) Positive learning in the age of information. Springer, Wiesbaden, pp. 89–107

    Chapter  Google Scholar 

  • Knauff M, Johnson-Laird PN (2002) Visual imagery can impede reasoning. Mem Cogn 30:363–371

    Article  Google Scholar 

  • Knauff M, May E (2006) Mental imagery, reasoning, and blindness. Quart J Exp Psychol 59(1):161–177

    Article  Google Scholar 

  • Knauff M, Mulack T, Kassubek J, Salih HR, Greenlee MW (2002) Spatial imagery in deductive reasoning: a functional MRI study. Cogn Brain Res 13:203–212

    Article  Google Scholar 

  • Knauff M, Fangmeier T, Ruff CC, Johnson-Laird PN (2003) Reasoning, models, and images: behavioral measures and cortical activity. J Cogn Neurosci 15:559–573

    Article  PubMed  Google Scholar 

  • Körner C, Gilchrist ID (2004) Eye movements in a simple spatial reasoning task. Perception 33(4):485–494. https://doi.org/10.1068/p5130

    Article  PubMed  Google Scholar 

  • Kosslyn SM (1980) Image and mind. Harvard University Press, Cambridge

    Google Scholar 

  • Kosslyn SM (1994) Image and brain. MIT Press, Cambridge

    Google Scholar 

  • Kosslyn SM, Thompson WL (2003) When is early visual cortex activated during visual mental imagery? Psychol Bull 129(5):723–746

    Article  PubMed  Google Scholar 

  • Kosslyn SM, Ball TM, Reiser BJ (1978) Visual images preserve metric spatial information: evidence from studies of image scanning. J Exp Psychol Hum Percept Perform 4(1):47–60

    Article  PubMed  CAS  Google Scholar 

  • Kosslyn SM, Alpert NM, Thompson WL, Maljkovic V, Weise SB, Chabris CF, Hamilton SE, Rauch SL, Buonanno FS (1993) Visual mental imagery activates topographically organized visual cortex: PET investigations. J Cogn Neurosci 5:263–287

    Article  PubMed  CAS  Google Scholar 

  • Kosslyn SM, Thompson WL, Alpert NM (1997) Neural systems shared by visual imagery and visual perception: a positron emission tomography study. NeuroImage 6:320–334

    Article  PubMed  CAS  Google Scholar 

  • Kosslyn SM, Pascual-Leone A, Felician O, Camposano S, Keenan JP, Thompson WL, Ganis G, Sukel KE, Alpert NM (1999) The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284:167–170

    Article  PubMed  CAS  Google Scholar 

  • Kosslyn SM, Ganis G, Thompson WL (2001) Neural foundations of imagery. Nat Rev Neurosci 2:635–642. https://doi.org/10.1038/35090055

    Article  PubMed  CAS  Google Scholar 

  • Mellet E, Petit L, Mazoyer B, Denis M, Tzourio N (1998) Reopening the mental imagery debate: lessons from functional anatomy. Neuroimage 8:129–139

    Article  PubMed  CAS  Google Scholar 

  • Newstead SE, Pollard P, Griggs RA (1986) Response bias in relational reasoning. Bull Psychon Soc 2:95–98

    Article  Google Scholar 

  • Noveck I, Goel V, Smith K (2004) The neural basis of conditional reasoning with arbitrary content. Cortex 40:613–622

    Article  PubMed  Google Scholar 

  • Oaksford M (2015) Imaging deductive reasoning and the new paradigm. Front Hum Neurosci 9:101. https://doi.org/10.3389/fnhum.2015.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Oaksford M, Chater N (2007) Bayesian rationality. University Press, Oxford

    Book  Google Scholar 

  • Oaksford M, Chater N (2017) Probabilities and bayesian rationality. In: Ball LJ, Thompson VA (eds) International handbook of thinking and reasoning, Routledge International Handbooks. Abingdon, UK, Routledge, pp 415–433

  • Pearson DG, Logie RH, Gilhooly KJ (1999) Verbal representations and spatial manipulation during mental synthesis. Eur J Cogn Psychol 11:295–314

    Article  Google Scholar 

  • Pearson J, Naselaris T, Holmes EA, Kosslyn SM (2015) Mental imagery: functional mechanisms and clinical applications. Trends Cogn Sci 19(10):590–602

    Article  PubMed  PubMed Central  Google Scholar 

  • Pompéia S, Manzano GM, Pradella-Hallinan M, Bueno OF (2007) Effects of lorazepam on deductive reasoning. Psychopharmacology 194(4):527–536

    Article  PubMed  CAS  Google Scholar 

  • Prado J, Chadha A, Booth JR (2011) The brain network for deductive reasoning: A quantitative meta-analysis of 28 neuroimaging studies. J Cogn Neurosci 23(11):3483–3497

    Article  PubMed  PubMed Central  Google Scholar 

  • Pylyshyn ZW (1973) What the mind’s eye tells the mind’s brain: a critique of mental imagery. Psychol Bull 80:1–24

    Article  Google Scholar 

  • Pylyshyn ZW (1981) The imagery debate: analogue media versus tacit knowledge. Psychol Rev 87:16–45

    Article  Google Scholar 

  • Pylyshyn ZW (2002) Mental imagery: In search of a theory. Behav Brain Sci 25:157–238

    PubMed  Google Scholar 

  • Pylyshyn ZW (2003) Explaining mental imagery: now you see it now you don’t. Trends Cogn Sci 7(3):111–112

    Article  PubMed  Google Scholar 

  • Pylyshyn ZW (2006) Seeing and visualizing: it’s not what you think. MIT Press, Cambridge

    Google Scholar 

  • Ragni M, Fangmeier T, Bittner A, Konieczny L (2009) Incremental model construction: Eye-movements reflect mental representations and operations - even if there is nothing to look at. In: Taatgen NA, van Rijn H (eds) Proceedings of the 31st annual conference of the cognitive science society. Cognitive Science Society, Austin, pp 3046–3051

    Google Scholar 

  • Ragni M, Franzmeier I, Maier S, Knauff M (2016) Uncertain relational reasoning in the parietal cortex. Brain Cogn 104:72–81. https://doi.org/10.1016/j.bandc.2016.02.006

    Article  PubMed  Google Scholar 

  • Richardson JTE (1987) The role of mental imagery in models of transitive inference. Br J Psychol 78:189–203

    Article  Google Scholar 

  • Rips LJ (1994) The psychology of proof. MIT Press, Cambridge

    Google Scholar 

  • Romei V, Thut G, Silvanto J (2016) Information-based approaches of noninvasive transcranial brain stimulation. Trends Neurosci 39:782–795. https://doi.org/10.1016/j.tins.2016.09.001

    Article  PubMed  CAS  Google Scholar 

  • Sack AT, Cohen Kadosh R, Schuhmann T, Moerel M, Walsh V, Goebel R (2009) Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. J Cogn Neurosci 21:207–221

    Article  PubMed  Google Scholar 

  • Sadoski M (1985) The natural use of imagery in story comprehension and recall: Replication and extension. Read Res Quart 20:658–667

    Article  Google Scholar 

  • Sadoski M, Paivio A (1994) A dual coding view of imagery and verbal processes in reading comprehension. In: Ruddell RB, Ruddel MR, Singer H (eds) Theoretical models and processes of reading, 4th edn. International Reading Association, Newark, pp 582–601

    Google Scholar 

  • Silvanto J, Cattaneo Z (2017) Common framework for “virtual lesion” and state-dependent TMS: the facilitatory/suppressive range model of online TMS effects on behaviour. Brain Cogn 119:32–38. https://doi.org/10.1016/jbandc.2017.09.007

    Article  PubMed  PubMed Central  Google Scholar 

  • Sima JF, Lindner M, Schultheis H, Barkowsky T (2010) Eye movements reflect reasoning with mental images but not with mental models in orientation knowledge tasks. In: Hölscher C, Shipley TF, Belardinelli M Olivetti, Bateman JA, Newcombe NS (eds) Spatial Cognition VII, lecture notes in computer science, vol 6222, Springer, Berlin/Heidelberg, pp 248–261

    Google Scholar 

  • Slezak P (1991) Can images be rotated and inspected? A test of the pictorial medium theory. In: Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society. Hillsdale, NJ, Erlbaum, pp. 55–60

  • Slotnick SD, Thompson WL, Kosslyn SM (2012) Visual memory and visual mental imagery recruit common control and sensory regions of the brain. Cogn Neurosci 3(1):14–20

    Article  PubMed  Google Scholar 

  • Stanfield RA, Zwaan RA (2001) The effect of implied orientation derived from verbal context on picture recognition. Psychol Sci 12:153–156

    Article  PubMed  CAS  Google Scholar 

  • Sternberg RJ (1980) Representation and process in linear syllogistic reasoning. J Exp Psychol Gen 109:119–159

    Article  Google Scholar 

  • Stewart LM, Walsh V, Rothwell JC (2001) Motor and phosphine thresholds: a transcranial magnetic stimulation study. Neuropsychologia 39(4):415–419

    Article  PubMed  CAS  Google Scholar 

  • Störring G (1908) Experimentelle Untersuchungen zu einfachen Schlußprozessen. Archiv für die Gesamte Psychologie 11:1–127

    Google Scholar 

  • Stuart I (1995) Spatial orientation and congenital blindness: a neuropsychological approach. J Vis Impair Blind 89:129–141

    Google Scholar 

  • Tsujii T, Sakatani K, Masuda S, Akiyama T, Watanabe S (2011) Evaluating the roles of the inferior frontal gyrus and superior parietal lobule in deductive reasoning: an rTMS study. Neuroimage 58:640–646

    Article  PubMed  Google Scholar 

  • van der Henst J-B (2002) Mental model theory versus the inference rule approach in relational reasoning. Think Reason 8:193–203

    Article  Google Scholar 

  • Vendetti MS, Johnson EL, Lemos CJ, Bunge SA (2015) Hemispheric differences in relational reasoning: novel insights based on an old technique. Front Hum Neurosci 9:55. https://doi.org/10.3389/fnhum.2015.00055

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh V, Pascual-Leone A (2003) Transcranial magnetic stimulation: a neurochromometrics of mind. MIT Press, Cambridge

    Google Scholar 

  • Walter B, Blecker C, Kirsch P, Sammer G, Schienle A, Stark R, Vaitl D (2003) MARINA: An easy to use tool for the creation of MAsks for Region of INterest Analyses [abstract]. Presented at the 9th International Conference on Functional Mapping of the Human Brain, June 19–22, 2003, New York, NY. Available on CD-Rom in NeuroImage, Vol. 19, No. 2

  • Wertheim J, Ragni M (2017) The neural mechanisms of relational reasoning: dissociating representational types. In: Gunzelmann G, Howes A, Tenbrink T, Davelaar EJ (eds) Proceedings of the 39th Annual Conference of the Cognitive Science Society. Cognitive Science Society, Austin, pp. 3510–3515

    Google Scholar 

  • Zwaan RA, Stanfield RA, Yaxley RH (2002) Language comprehenders mentally represent the shape of objects. Psychol Sci 13:168–171

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) with a Grant to MR within the Priority Program “New Frameworks of Rationality” (SPP1516) RA 1934/2-1, a Heisenberg-fellowship RA 1934/3-1, and the BrainLinks-BrainTools Cluster of Excellence funded by the German Research Foundation (DFG, Grant Number EXC 1086). MK’s research was supported by the DFG by Grant Kn 465/6-2. We thank the two anonymous reviewers for many helpful comments, and Julia Wertheim for proof-reading an earlier draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Hamburger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamburger, K., Ragni, M., Karimpur, H. et al. TMS applied to V1 can facilitate reasoning. Exp Brain Res 236, 2277–2286 (2018). https://doi.org/10.1007/s00221-018-5296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-018-5296-1

Keywords

Navigation