Participants
The sample size was calculated on the basis of previous studies investigating the effect of tDCS on WM (Fregni et al. 2005; Ohn et al. 2008). Twenty-four undergraduate students of Leiden University (20 females and four males, mean age = 19.6 years, range 18–26) participated in the experiment. Participants were recruited via an online recruiting system and offered course credits for participating in a study on the effects of brain stimulation on memory. Once recruited, participants were randomly assigned to one of the two following experimental groups: off-line stimulation (N = 12; two males; mean age = 20.1, SD = 2.5) and online stimulation (N = 12; two males; mean age = 19.7, SD = 2.3). Groups did not differ in terms of age, F < 1, or gender, χ
2 = .00, p = 1.00. All participants were naïve to foc.us tDCS. Participants were screened individually via a phone interview by the same laboratory assistant using the Mini International Neuropsychiatric Interview (MINI). The MINI is a short, structured interview of about 15 min that screens for several psychiatric disorders and drug use, often used in clinical and pharmacological research (Sheehan et al. 1998; Colzato and Hommel 2008; Colzato et al. 2009). Participants were considered suitable to participate in this study if they fulfilled the following criteria: (1) age between 18 and 32 years; (2) no history of neurological or psychiatric disorders; (3) no history of substance abuse or dependence; (4) no history of brain surgery, tumor, or intracranial metal implantation; (5) no chronic or acute medications; (6) no pregnancy; (7) no susceptibility to seizures or migraine; and (8) no pacemaker or other implanted devices.
Prior to the first testing session, all participants received a verbal and written explanation of the foc.us tDCS procedure and gave their written informed consent to participate in the study. No information was provided about the different types of stimulation (active vs. sham). The study conformed to the ethical standards of the declaration of Helsinki, and the protocol was approved by the local ethical committee (Leiden University, Institute for Psychological Research).
Apparatus and procedure
A single-blinded, sham-controlled, randomized crossover within-subject design with counterbalancing of the order of conditions was used to assess the effect of off-line and online foc.us tDCS on WM updating in healthy young volunteers. The foc.us headset (version 1) was applied over the prefrontal cortex (PFC) according to the manufacturer’s guidelines (see Fig. 1). All participants took part in two sessions (active vs. sham) and were tested individually.
Upon arrival, participants read and signed the informed consent. In the off-line stimulation group, active or sham stimulation was applied for 20 min while at rest. Immediately thereafter, participants were asked to perform the N-back task (see Kane et al. 2007, for a review), which lasted for 15 min. In the online stimulation group, participants performed the N-back task five minutes after the onset of the stimulation, which was applied throughout the whole task.
At the end of each session, participants were asked to complete a foc.us (tDCS) adverse effects questionnaire requiring them to rate, on a five-point (1–5) scale, how much they experienced: (1) headache, (2) neck pain, (3) nausea, (4) muscles contraction in face and/or neck, (5) stinging sensation under the electrodes, (6) burning sensation under the electrodes, (7) uncomfortable
(generic) feelings, and (8) other sensations and/or adverse effects. After completion of the second session, participants were debriefed and compensated for their participation.
Foc.us tDCS commercial device
Direct current was induced by four circular saline-soaked surface sponge electrodes (2.0 cm diameter) and delivered by a foc.us tDCS commercial device v1 (http://www.foc.us/; ©FOC.US LABS/EUROPEAN ENGINEERS), a device complying with Part 15 of the Federal Communications Commission (FCC) Rules, but without being CE (European Conformity)-certified. The Federal Code of Regulation (CFR) FCC Part 15 is a common testing standard for most electronic equipment. FCC Part 15 covers the regulations under which an intentional, unintentional, or incidental radiator may be operated without an individual license. FCC Part 15 also covers technical specifications, administrative requirements, and other conditions relating to the marketing of FCC Part 15 devices. Depending on the type of the equipment, verification, declaration of conformity, or certification is the process for FCC Part 15 compliance.
Foc.us tDCS was applied on participants’ head according to the instructions provided by the manufacturer, which allow for a single type of electrodes montage, that is, a bipolar-balanced montage (see Nasseri et al. 2015, for a tDCS electrodes montage classification), with anodal stimulation applied over the left prefrontal cortex and cathodal stimulation applied over the right prefrontal cortex (see Fig. 1, leftmost panel). For the active stimulation, a constant current of 1.5 mA was delivered for 20 min with a linear fade-in/fade-out of 15 s. These parameters are within safety limits established from prior work in humans (Nitsche and Paulus 2000; Nitsche et al. 2003, 2004; Poreisz et al. 2007). For sham stimulation, the position of the electrodes, current intensity, and fad-in/fade-out were the same as in the active tDCS, but stimulation was automatically turned off after 30 s, without the participants’ awareness. Hence, participants felt the initial short-lasting skin sensation (i.e., itching and/or tingling) associated with tDCS without receiving any active current for the rest of the stimulation period. Stimulation for 30 s does not induce after effects (Nitsche and Paulus 2000). This procedure has been shown to be effective in blinding participants to the received stimulation condition (see Poreisz et al. 2007; Gandiga et al. 2006; Palm et al. 2013). Consistently, none of the participants was able to determine whether or not he/she received real or sham stimulation. The condition (active vs. sham) and duration of stimulation were controlled by the foc.us app iOS (version 2.0) using iPad 4.
N-back task
The experiment was controlled by an ACPI uniprocessor PC running on an Intel Celeron 2.8 gHz processor, attached to a Philips 109B6 17 inch monitor (LightFrame 3, 96 dpi with a refresh rate of 120 Hz). Responses were made by using a QWERTY computer keyboard. Stimulus presentation and data collection were controlled using E-Prime 2.0 software system (Psychology Software Tools, Inc., Pittsburgh, PA).
The two conditions of the N-back task were adapted from Colzato et al. (2013a, b). A stream of single visual letters (taken from B, C, D, G, P, T, F, N, L) was presented (stimulus–onset asynchrony 2000 ms; duration of presentation 1000 ms). Participants responded to targets and to nontargets.
Half of the participants pressed the “z” key in response to a target and the “m” key in response to a nontarget; the other half of the participants received the opposite mapping. Target definition differed with respect to the experimental condition. In the 2-back condition, targets were defined as stimuli within the sequence that were identical to the one that was presented two trials before. In the 4-back condition, participants had to respond if the presented letter matched the one that was presented four trials before. Each condition consisted of a practice block followed by two experimental blocks. The 2-back condition comprised of 106 trials in total (42 target stimuli and 64 nontarget stimuli), whereas the 4-back condition consisted of 110 trials (42 target stimuli and 68 nontarget stimuli). All participants performed the 2-back condition first and then the 4-back condition.
Statistical analyses
Repeated-measures analyses of variance (ANOVAs) including stimulation protocol (off-line vs. online) as between-subjects factor and condition (Active vs. Sham) as within-subjects factors were performed to compare participants’ self-reports of discomfort about headache, neck pain, nausea, muscles contraction in face and/or neck, stinging sensation under the electrodes, burning sensation under the electrodes, and other uncomfortable (generic) feelings.
For the N-back task, practice blocks and either the first two trials (in the 2-back condition) or the first four trials (in the 4-back condition) of each block were excluded from the analyses. Repeated-measures ANOVAs with load (2-back vs. 4-back) and condition (Active vs. Sham) as within-subjects factors and stimulation protocol (off-line vs. online) as between-subjects factor were carried out on reaction times (RTs) on correct trials, as well as for hits, correct rejections, false alarms, and misses in percent. Furthermore, the sensitivity index dˈ was calculated for both active and sham stimulation and the two WM loads separately (see. Haatveit et al. 2010; Buckert et al. 2012). This index, which derives from signal detection theory (Swets, Tanner and Birdsall, 1961), provides a combined measure of correct hits and false alarms and thus reflects participants’ ability to discriminate target from nontargets, with higher dˈ indicating better signal detection. dˈ was computed from hit rate and false alarm (FA) rate using the following formula: ZHIT–ZFA, where Z represents the z-scores of the two rates (Macmillan and Creelman 1991). The Z transformation was done using the inverse cumulative distribution function in Microsoft Excel 2010 (NORMSINV). Perfect scores were adjusted using these formulas: 1−1/(2n) for perfect (i.e., 100 %) hits and 1/(2n) for zero false alarms, where n was number of total hits or false alarms (Macmillan and Creelman 1991). A significance level of p < 0.05 was adopted for all statistical tests.
In addition to standard statistical methods, we calculated Bayesian probabilities associated with the occurrence of the null (p(H0|D)) and alternative (p(H1|D)) hypotheses, given the observed data (see Masson 2011; Wagenmakers 2007). This method allows making inferences about both significant and nonsignificant effects by providing the exact probability of their occurrence. The probabilities range from with 0 (i.e., no evidence) to 1 (i.e., very strong evidence; see Raftery 1995).