Experimental Brain Research

, Volume 232, Issue 11, pp 3475–3488 | Cite as

Reaction time in ankle movements: a diffusion model analysis

Research Article


Reaction time (RT) is one of the most commonly used measures of neurological function and dysfunction. Despite the extensive studies on it, no study has ever examined the RT in the ankle. Twenty-two subjects were recruited to perform simple, 2- and 4-choice RT tasks by visually guiding a cursor inside a rectangular target with their ankle. RT did not change with spatial accuracy constraints imposed by different target widths in the direction of the movement. RT increased as a linear function of potential target stimuli, as would be predicted by Hick–Hyman law. Although the slopes of the regressions were similar, the intercept in dorsal–plantar (DP) direction was significantly smaller than the intercept in inversion–eversion (IE) direction. To explain this difference, we used a hierarchical Bayesian estimation of the Ratcliff’s (Psychol Rev 85:59, 1978) diffusion model parameters and divided processing time into cognitive components. The model gave a good account of RTs, their distribution and accuracy values, and hence provided a testimony that the non-decision processing time (overlap of posterior distributions between DP and IE < 0.045), the boundary separation (overlap of the posterior distributions < 0.1) and the evidence accumulation rate (overlap of the posterior distributions < 0.01) components of the RT accounted for the intercept difference between DP and IE. The model also proposed that there was no systematic change in non-decision processing time or drift rate when spatial accuracy constraints were altered. The results were in agreement with the memory drum hypothesis and could be further justified neurophysiologically by the larger innervation of the muscles controlling DP movements. This study might contribute to assessing deficits in sensorimotor control of the ankle and enlighten a possible target for correction in the framework of our on-going effort to develop robotic therapeutic interventions to the ankle of children with cerebral palsy.


Hick–Hyman law Reaction time Speed–accuracy tradeoff Ankle Kinematic analysis Sensorimotor control 


  1. Anstey KJ, Mack HA, Christensen H et al (2007) Corpus callosum size, reaction time speed and variability in mild cognitive disorders and in a normative sample. Neuropsychologia 45:1911–1920. doi:10.1016/j.neuropsychologia.2006.11.020 PubMedCrossRefGoogle Scholar
  2. Baird BJ, Tombaugh TN, Francis M (2007) The effects of practice on speed of information processing using the adjusting-paced serial addition test (adjusting-PSAT) and the computerized tests of information processing (CTIP). Appl Neuropsychol 14:88–100. doi:10.1080/09084280701319912 PubMedCrossRefGoogle Scholar
  3. Bisson E, Contant B, Sveistrup H, Lajoie Y (2007) Functional balance and dual-task reaction times in older adults are improved by virtual reality and biofeedback training. Cyberpsychol Behav 10:16–23. doi:10.1089/cpb.2006.9997 PubMedCrossRefGoogle Scholar
  4. Boff KR, Kaufman L, Thomas JP (1994) Handbook of perception and human performance. Volume 2. Cognitive processes and performance. In: DTIC Document, pp 30–35Google Scholar
  5. Botwinick J (1966) Cautiousness in advanced age. J Gerontol 21:347–353PubMedCrossRefGoogle Scholar
  6. Brinley JF (1965) Cognitive sets, speed and accuracy of performance in the elderly. In: Welford AT, Birren JE (eds) Behavior, aging and the nervous system. Thomas, Springfield, pp 114–149Google Scholar
  7. Brouwer B, Ashby P (1992) Corticospinal projections to lower limb motoneurons in man. Exp Brain Res 89:649–654PubMedCrossRefGoogle Scholar
  8. Brown RG, Jahanshahi M, Marsden CD (1993) Response choice in Parkinson’s disease. The effects of uncertainty and stimulus-response compatibility. Brain 116(Pt 4):869–885PubMedCrossRefGoogle Scholar
  9. Buchanan JJ, Park JH, Ryu YU, Shea CH (2003) Discrete and cyclical units of action in a mixed target pair aiming task. Exp Brain Res 150:473–489. doi:10.1007/s00221-003-1471-z PubMedGoogle Scholar
  10. Buchanan JJ, Park JH, Shea CH (2006) Target width scaling in a repetitive aiming task: switching between cyclical and discrete units of action. Exp Brain Res 175:710–725. doi:10.1007/s00221-006-0589-1 PubMedCrossRefGoogle Scholar
  11. Chang JJ, Wu TI, Wu WL, Su FC (2005) Kinematical measure for spastic reaching in children with cerebral palsy. Clin Biomech (Bristol, Avon) 20:381–388. doi:10.1016/j.clinbiomech.2004.11.015 CrossRefGoogle Scholar
  12. Ditterich J (2006) Stochastic models of decisions about motion direction: behavior and physiology. Neural Netw 19:981–1012. doi:10.1016/j.neunet.2006.05.042 PubMedCrossRefGoogle Scholar
  13. Donders FC (1969) On the speed of mental processes. Acta Psychol (Amst) 30:412–431CrossRefGoogle Scholar
  14. Dutilh G, Krypotos AM, Wagenmakers EJ (2011) Task-related versus stimulus-specific practice. Exp Psychol 58:434–442. doi:10.1027/1618-3169/a000111 PubMedCrossRefGoogle Scholar
  15. Evarts EV, Teravainen H, Calne DB (1981) Reaction time in Parkinson’s disease. Brain 104:167–186PubMedCrossRefGoogle Scholar
  16. Fasoli SE, Ladenheim B, Mast J, Krebs HI (2012) New horizons for robot-assisted therapy in pediatrics. Am J Phys Med Rehabil 91:S280–S289. doi:10.1097/PHM.0b013e31826bcff4 PubMedCrossRefGoogle Scholar
  17. Fernaeus SE, Ostberg P, Wahlund LO (2013) Late reaction times identify MCI. Scand J Psychol 54:283–285. doi:10.1111/sjop.12053 PubMedCrossRefGoogle Scholar
  18. Fjell AM, Westlye LT, Amlien IK, Walhovd KB (2011) Reduced white matter integrity is related to cognitive instability. J Neurosci 31:18060–18072. doi:10.1523/JNEUROSCI.4735-11.2011 PubMedCrossRefGoogle Scholar
  19. Gamerman D, Lopes HF (2006) Markov chain Monte Carlo: stochastic simulation for Bayesian inference, 2nd edn. Chapman & Hall/CRC Press, Boca RatonGoogle Scholar
  20. Garry MI, Franks IM (2000) Reaction time differences in spatially constrained bilateral and unilateral movements. Exp Brain Res 131:236–243PubMedCrossRefGoogle Scholar
  21. Garry MI, Franks IM (2002) Spatially precise bilateral arm movements are controlled by the contralateral hemisphere: evidence from a lateralized visual stimulus paradigm. Exp Brain Res 142:292–296. doi:10.1007/s00221-001-0949-9 PubMedCrossRefGoogle Scholar
  22. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, CambridgeGoogle Scholar
  23. Gold JI, Shadlen MN (2007) The neural basis of decision making. Annu Rev Neurosci 30:535–574. doi:10.1146/annurev.neuro.29.051605.113038 PubMedCrossRefGoogle Scholar
  24. Goodrich S, Henderson L, Kennard C (1989) On the existence of an attention-demanding process peculiar to simple reaction time: converging evidence from Parkinson’s disease. Cogn Neuropsychol 6:309–331. doi:10.1080/02643298908253422 CrossRefGoogle Scholar
  25. Gorus E, De Raedt R, Lambert M, Lemper JC, Mets T (2008) Reaction times and performance variability in normal aging, mild cognitive impairment, and Alzheimer’s disease. J Geriatr Psychiatry Neurol 21:204–218. doi:10.1177/0891988708320973 PubMedCrossRefGoogle Scholar
  26. Hanson C, Lofthus GK (1978) Effects of fatigue and laterality on fractionated reaction time. J Mot Behav 10:177–184PubMedCrossRefGoogle Scholar
  27. Heekeren HR, Marrett S, Bandettini PA, Ungerleider LG (2004) A general mechanism for perceptual decision-making in the human brain. Nature 431:859–862. doi:10.1038/nature02966 PubMedCrossRefGoogle Scholar
  28. Henry FM, Rogers DE (1960) Increased response latency for complicated movements and a “memory drum” theory of neuromotor reaction. Res Q Am Assoc Health, Phys Educ Recreat 31:448–458Google Scholar
  29. Heywood S, Churcher J (1980) Structure of the visual array and saccadic latency: implications for oculomotor control. Q J Exp Psychol 32:335–341. doi:10.1080/14640748008401169 PubMedCrossRefGoogle Scholar
  30. Hick WE (1952) On the rate of gain of information. Q J Exp Psychol 4:11–26. doi:10.1080/17470215208416600 CrossRefGoogle Scholar
  31. Horgan JS (1980) Reaction-time and movement-time of children with cerebral palsy: under motivational reinforcement conditions. Am J Phys Med 59:22–29PubMedGoogle Scholar
  32. Hyman R (1953) Stimulus information as a determinant of reaction time. J Exp Psychol 45:188–196. doi:10.1037/h0056940 PubMedCrossRefGoogle Scholar
  33. Jahanshahi M, Brown RG, Marsden CD (1993) A comparative study of simple and choice reaction time in Parkinson’s, Huntington’s and cerebellar disease. J Neurol Neurosurg Psychiatry 56:1169–1177PubMedCrossRefPubMedCentralGoogle Scholar
  34. Jepma M, Wagenmakers EJ, Band GP, Nieuwenhuis S (2009) The effects of accessory stimuli on information processing: evidence from electrophysiology and a diffusion model analysis. J Cogn Neurosci 21:847–864. doi:10.1162/jocn.2009.21063 PubMedCrossRefGoogle Scholar
  35. King B, Wood C, Faulkner D (2008) Sensitivity to visual and auditory stimuli in children with developmental dyslexia. Dyslexia 14:116–141. doi:10.1002/dys.349 PubMedCrossRefGoogle Scholar
  36. Klapp ST (2010) Comments on the classic Henry and Rogers (1960) paper on its 50th anniversary: resolving the issue of simple versus choice reaction time. Res Q Exerc Sport 81:108–112PubMedCrossRefGoogle Scholar
  37. Klauer KC, Voss A, Schmitz F, Teige-Mocigemba S (2007) Process components of the Implicit Association Test: a diffusion-model analysis. J Pers Soc Psychol 93:353–368. doi:10.1037/0022-3514.93.3.353 PubMedCrossRefGoogle Scholar
  38. Krebs HI, Hogan N (2012) Robotic therapy: the tipping point. Am J Phys Med Rehabil 91:S290–S297. doi:10.1097/PHM.0b013e31826bcd80 PubMedCrossRefPubMedCentralGoogle Scholar
  39. Krebs HI, Hogan N, Aisen ML, Volpe BT (1998) Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 6:75–87PubMedCrossRefPubMedCentralGoogle Scholar
  40. Krebs HI, Palazzolo JJ, Dipietro L et al (2003) Rehabilitation robotics: performance-based progressive robot-assisted therapy. Auton Robots 15:7–20. doi:10.1023/A:1024494031121 CrossRefGoogle Scholar
  41. Krebs HI, Rossi S, Kim SJ, Artemiadis PK, Williams D, Castelli E, Cappa P (2011) Pediatric anklebot. IEEE Int Conf Rehabil Robot 2011:5975410. doi:10.1109/ICORR.2011.5975410 PubMedGoogle Scholar
  42. Kruschke JK (2010) What to believe: Bayesian methods for data analysis. Trends Cogn Sci 14(7):293–300Google Scholar
  43. Kveraga K, Boucher L, Hughes HC (2002) Saccades operate in violation of Hick’s law. Exp Brain Res 146:307–314. doi:10.1007/s00221-002-1168-8 PubMedCrossRefGoogle Scholar
  44. Laming DRJ (1968) Information theory of choice-reaction times. Academic Press, London Google Scholar
  45. Lindley DV (1965) Introduction to probability and statistics from a Bayesian viewpoint, Part 2. Cambridge University Press, CambridgeGoogle Scholar
  46. Leite FP, Ratcliff R (2010) Modeling reaction time and accuracy of multiple-alternative decisions. Atten Percept Psychophys 72:246–273. doi:10.3758/APP.72.1.246 PubMedCrossRefPubMedCentralGoogle Scholar
  47. Leth-Steensen C, Elbaz ZK, Douglas VI (2000) Mean response times, variability, and skew in the responding of ADHD children: a response time distributional approach. Acta Psychol (Amst) 104:167–190CrossRefGoogle Scholar
  48. Light KE, Reilly MA, Behrman AL, Spirduso WW (1996) Reaction times and movement times: benefits of practice to younger and older adults. J Aging Phys Act 4:27–41Google Scholar
  49. Longstreth LE, el-Zahhar N, Alcorn MB (1985) Exceptions to Hick’s law: explorations with a response duration measure. J Exp Psychol Gen 114:417–434PubMedCrossRefGoogle Scholar
  50. Luce RD (1986) Response times: their role in inferring elementary mental organization3. Oxford University Press, OxfordGoogle Scholar
  51. Luna B, Garver KE, Urban TA, Lazar NA, Sweeney JA (2004) Maturation of cognitive processes from late childhood to adulthood. Child Dev 75:1357–1372. doi:10.1111/j.1467-8624.2004.00745.x PubMedCrossRefGoogle Scholar
  52. MacDonald SW, Li SC, Backman L (2009) Neural underpinnings of within-person variability in cognitive functioning. Psychol Aging 24:792–808. doi:10.1037/a0017798 PubMedCrossRefGoogle Scholar
  53. Madden DJ (2001) Speed and timing of behavioral processes. In: Birren JE, Schaie KW (eds) Handbook of the psychology of aging, 5th edn. Academic Press, San Diego, CA, pp 288–312  Google Scholar
  54. Matzke D, Dolan CV, Logan GD, Brown SD, Wagenmakers EJ (2013) Bayesian parametric estimation of stop–signal reaction time distributions. J Exp Psychol Gen 142:1047–1073Google Scholar
  55. Marsden CD (1982) The mysterious motor function of the basal ganglia: the Robert Wartenberg Lecture. Neurology 32:514–539PubMedCrossRefGoogle Scholar
  56. Martelli M, Barban F, Zoccolotti P, Silveri MC (2012) Slowing of information processing in Alzheimer disease: motor as well as cognitive factors. Cogn Behav Neurol 25:175–185. doi:10.1097/WNN.0b013e318274fc44 PubMedCrossRefGoogle Scholar
  57. Merkt J, Singmann H, Bodenburg S, Goossens-Merkt H, Kappes A, Wendt M, Gawrilow C (2013) Flanker performance in female college students with ADHD: a diffusion model analysis. Atten Defic Hyperact Disord. doi:10.1007/s12402-013-0110-1 PubMedGoogle Scholar
  58. Michmizos KP, Krebs HI (2012a) Assist-as-needed in lower extremity robotic therapy for children with cerebral palsy. In: 2012 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), pp 1081–1086Google Scholar
  59. Michmizos KP, Krebs HI (2012b) Serious games for the pediatric anklebot. In: 2012 4th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), pp 1710–1714Google Scholar
  60. Michmizos KP, Krebs HI (2014a) Pointing with the ankle: the speed-accuracy tradeoff. Exp Brain Res 232:647–657. doi:10.1007/s00221-013-3773-0 PubMedCrossRefGoogle Scholar
  61. Michmizos KP, Krebs HI (2014b) Modeling reaction time in the ankle. In: 2014 5th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics (BioRob), Sao Paulo, BrazilGoogle Scholar
  62. Miller JO, Low K (2001) Motor processes in simple, go/no-go, and choice reaction time tasks: a psychophysiological analysis. J Exp Psychol Hum Percept Perform 27:266–289PubMedCrossRefGoogle Scholar
  63. Mirabella G, Iaconelli S, Modugno N, Giannini G, Lena F, Cantore G (2013) Stimulation of subthalamic nuclei restores a near normal planning strategy in Parkinson’s patients. PLoS ONE 8:e62793. doi:10.1371/journal.pone.0062793 PubMedCrossRefPubMedCentralGoogle Scholar
  64. Moore BD, Drouin J, Gansneder BM, Shultz SJ (2002) The differential effects of fatigue on reflex response timing and amplitude in males and females. J Electromyogr Kinesiol 12:351–360PubMedCrossRefGoogle Scholar
  65. Moore KL, Dalley AF, Agur AMR (2010) Lower limb. In: Clinically oriented anatomy, 6th edn. Lippincott Williams and Wilkins, Baltimore, pp 509–669 Google Scholar
  66. Morris AF (1977) Effects of fatiguing isometric and isotonic exercise on resisted and unresisted reaction time components. Eur J Appl Physiol Occup Physiol 37:1–11PubMedCrossRefGoogle Scholar
  67. Moy G, Millet P, Haller S et al (2011) Magnetic resonance imaging determinants of intraindividual variability in the elderly: combined analysis of grey and white matter. Neuroscience 186:88–93. doi:10.1016/j.neuroscience.2011.04.028 PubMedCrossRefGoogle Scholar
  68. Mulder MJ, Wagenmakers EJ, Ratcliff R, Boekel W, Forstmann BU (2012) Bias in the brain: a diffusion model analysis of prior probability and potential payoff. J Neurosci 32:2335–2343. doi:10.1523/JNEUROSCI.4156-11.2012 PubMedCrossRefGoogle Scholar
  69. Naples A, Katz L, Grigorenko EL (2012) Reading and a diffusion model analysis of reaction time. Dev Neuropsychol 37:299–316. doi:10.1080/87565641.2011.614979 PubMedCrossRefPubMedCentralGoogle Scholar
  70. Navarro DJ, Fuss IG (2009) Fast and accurate calculations for first-passage times in Wiener diffusion models. J Math Psychol 53:222–230. doi:10.1016/j.jmp.2009.02.003 CrossRefGoogle Scholar
  71. Perry J (1992) Gait analysis: normal and pathological function. Slack, ThorofareGoogle Scholar
  72. Philiastides MG, Ratcliff R, Sajda P (2006) Neural representation of task difficulty and decision making during perceptual categorization: a timing diagram. J Neurosci 26:8965–8975. doi:10.1523/JNEUROSCI.1655-06.2006 PubMedCrossRefGoogle Scholar
  73. Ratcliff R (1978) A theory of memory retrieval. Psychol Rev 85:59CrossRefGoogle Scholar
  74. Ratcliff R, McKoon G (1981) Automatic and strategic priming in recognition. J Verbal Learn Verbal Behav 20:204–215CrossRefGoogle Scholar
  75. Ratcliff R, McKoon G (2008) The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput 20:873–922PubMedCrossRefPubMedCentralGoogle Scholar
  76. Ratcliff R, Tuerlinckx F (2002) Estimating parameters of the diffusion model: approaches to dealing with contaminant reaction times and parameter variability. Psychon Bull Rev 9:438–481PubMedCrossRefPubMedCentralGoogle Scholar
  77. Ratcliff R, Van Dongen HP (2009) Sleep deprivation affects multiple distinct cognitive processes. Psychon Bull Rev 16:742–751PubMedCrossRefPubMedCentralGoogle Scholar
  78. Ratcliff R, Thapar A, McKoon G (2001) The effects of aging on reaction time in a signal detection task. Psychol Aging 16:323PubMedCrossRefGoogle Scholar
  79. Ratcliff R, Thapar A, Gomez P, McKoon G (2004a) A diffusion model analysis of the effects of aging in the lexical-decision task. Psychol Aging 19:278PubMedCrossRefPubMedCentralGoogle Scholar
  80. Ratcliff R, Thapar A, McKoon G (2004b) A diffusion model analysis of the effects of aging on recognition memory. J Mem Lang 50:408–424CrossRefGoogle Scholar
  81. Ratcliff R, Thapar A, McKoon G (2010) Individual differences, aging, and IQ in two-choice tasks. Cogn Psychol 60:127–157PubMedCrossRefPubMedCentralGoogle Scholar
  82. Ratcliff R, Love J, Thompson CA, Opfer JE (2012) Children are not like older adults: a diffusion model analysis of developmental changes in speeded responses. Child Dev 83:367–381PubMedCrossRefPubMedCentralGoogle Scholar
  83. Rikli RE, Edwards DJ (1991) Effects of a three-year exercise program on motor function and cognitive processing speed in older women. Res Q Exerc Sport 62:61–67PubMedCrossRefGoogle Scholar
  84. Rogers MW, Chan CW (1988) Motor planning is impaired in Parkinson’s disease. Brain Res 438:271–276PubMedCrossRefGoogle Scholar
  85. Roy A, Krebs HI, Williams DJ, Bever CT, Forrester LW, Macko RM, Hogan N (2009) Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. In: IEEE transactions on robotics, vol 25, pp 569–582Google Scholar
  86. Salthouse TA, Hedden T (2002) Interpreting reaction time measures in between-group comparisons. J Clin Exp Neuropsychol 24:858–872PubMedCrossRefGoogle Scholar
  87. Schieppati M, Trompetto C, Abbruzzese G (1996) Selective facilitation of responses to cortical stimulation of proximal and distal arm muscles by precision tasks in man. J Physiol 491:551–562PubMedPubMedCentralGoogle Scholar
  88. Schmitz N, Daly E, Murphy D (2007) Frontal anatomy and reaction time in autism. Neurosci Lett 412:12–17PubMedCrossRefGoogle Scholar
  89. Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, UrbanaGoogle Scholar
  90. Spencer KM, Coles MG (1999) The lateralized readiness potential: relationship between human data and response activation in a connectionist model. Psychophysiology 36:364–370PubMedCrossRefGoogle Scholar
  91. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion). J Royal Stat Soc Ser B 64(4):583–639 Google Scholar
  92. Tamnes CK, Fjell AM, Westlye LT, Østby Y, Walhovd KB (2012) Becoming consistent: developmental reductions in intraindividual variability in reaction time are related to white matter integrity. J Neurosci 32:972–982PubMedCrossRefGoogle Scholar
  93. Teichner WH, Krebs MJ (1974) Visual search for simple targets. Psychol Bull 81:15PubMedCrossRefGoogle Scholar
  94. Van Maanen L, Brown SD, Eichele T, Wagenmakers E-J, Ho T, Serences J, Forstmann BU (2011) Neural correlates of trial-to-trial fluctuations in response caution. J Neurosci 31:17488–17495Google Scholar
  95. Van Maanen L, Grasman RPPP, Forstmann BU, Keuken MC, Brown SD, Wagenmakers E-J (2012) Similarity and number of alternatives in the random-dot motion paradigm. Atten Percept Psychophys 74:739–753Google Scholar
  96. Voss A, Rothermund K, Voss J (2004) Interpreting the parameters of the diffusion model: an empirical validation. Mem Cogn 32:1206–1220CrossRefGoogle Scholar
  97. Wald A (2004) Sequential analysis. Courier Dover Publications, New YorkGoogle Scholar
  98. Welford AT (1968) Fundamentals of skill. Methuen, LondonGoogle Scholar
  99. White CN, Ratcliff R, Vasey MW, McKoon G (2010a) Anxiety enhances threat processing without competition among multiple inputs: a diffusion model analysis. Emotion 10:662PubMedCrossRefGoogle Scholar
  100. White CN, Ratcliff R, Vasey MW, McKoon G (2010b) Using diffusion models to understand clinical disorders. J Math Psychol 54:39–52PubMedCrossRefPubMedCentralGoogle Scholar
  101. Wiecki TV, Sofer I, Frank MJ (2013) HDDM: hierarchical Bayesian estimation of the drift-diffusion model in python. Front Neuroinform 7:14. doi:10.3389/fninf.2013.00014 PubMedPubMedCentralGoogle Scholar
  102. Yeung SS, Au AL, Chow CC (1999) Effects of fatigue on the temporal neuromuscular control of vastus medialis muscle in humans. Eur J Appl Physiol 80:379–385CrossRefGoogle Scholar
  103. Zahn TP, Kruesi MJ, Rapoport JL (1991) Reaction time indices of attention deficits in boys with disruptive behavior disorders. J Abnorm Child Psychol 19:233–252PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Konstantinos P. Michmizos
    • 1
  • Hermano Igo Krebs
    • 1
    • 2
  1. 1.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Division of Rehabilitative Medicine, Department of NeurologyUniversity of Maryland, School of MedicineBaltimoreUSA

Personalised recommendations