Anker AR, Sadacca BF, Yates BJ (2006) Vestibular inputs to propriospinal interneurons in the feline C1–C2 spinal cord projecting to the C5–C6 ventral horn. Exp Brain Res 170:39–51. doi:10.1007/s00221-005-0186-8
CAS
PubMed
Google Scholar
Arshian MS, Puterbaugh SR, Miller DJ, Catanzaro MF, Hobson CE, McCall AA, Yates BJ (2013) Effects of visceral inputs on the processing of labyrinthine signals by the inferior and caudal medial vestibular nuclei: ramifications for the production of motion sickness. Exp Brain Res 228:353–363. doi:10.1007/s00221-013-3568-3
PubMed Central
PubMed
Google Scholar
Balaban CD (1996) Vestibular nucleus projections to the parabrachial nucleus in rabbits: implications for vestibular influences on the autonomic nervous system. Exp Brain Res 108:367–381
CAS
PubMed
Google Scholar
Balaban CD (2002) Neural substrates linking balance control and anxiety. Physiol Behav 77:469–475
CAS
PubMed
Google Scholar
Balaban CD, Jacob RG (2001) Background and history of the interface between anxiety and vertigo. J Anxiety Disord 15:27–51
CAS
PubMed
Google Scholar
Balaban CD, Thayer JF (2001) Neurological bases for balance-anxiety links. J Anxiety Disord 15:53–79
CAS
PubMed
Google Scholar
Baloh RW, Honorubia V (1990) Clinical neurophysiology of the vestibular system. FA Davis Co, Philadelphia
Google Scholar
Bar R, Gil A, Tal D (2009) Safety of double-dose transdermal scopolamine. Pharmacotherapy 29:1082–1088. doi:10.1592/phco.29.9.1082
CAS
PubMed
Google Scholar
Bastian AJ (2011) Moving, sensing and learning with cerebellar damage. Curr Opin Neurobiol 21:596–601. doi:10.1016/j.conb.2011.06.007
CAS
PubMed Central
PubMed
Google Scholar
Bhanpuri NH, Okamura AM, Bastian AJ (2013) Predictive modeling by the cerebellum improves proprioception. J Neurosci 33:14301–14306. doi:10.1523/JNEUROSCI.0784-13.2013
CAS
PubMed Central
PubMed
Google Scholar
Bles W, Bos JE, de Graaf B, Groen E, Wertheim AH (1998) Motion sickness: only one provocative conflict? Brain Res Bull 47:481–487
CAS
PubMed
Google Scholar
Bolton PS, Kerman IA, Woodring SF, Yates BJ (1998) Influences of neck afferents on sympathetic and respiratory nerve activity. Brain Res Bull 47:413–419
CAS
PubMed
Google Scholar
Bortolami SB, Rocca S, Daros S, DiZio P, Lackner JR (2006) Mechanisms of human static spatial orientation. Exp Brain Res 173:374–388. doi:10.1007/s00221-006-0387-9
CAS
PubMed
Google Scholar
Bos JE, MacKinnon SN, Patterson A (2005) Motion sickness symptoms in a ship motion simulator: effects of inside, outside, and no view. Aviat Space Environ Med 76:1111–1118
PubMed
Google Scholar
Bronstein AM, Golding JF, Gresty MA (2013) Vertigo and dizziness from environmental motion: visual vertigo, motion sickness, and drivers’ disorientation. Semin Neurol 33:219–230. doi:10.1055/s-0033-1354602
PubMed
Google Scholar
Brooks JX, Cullen KE (2009) Multimodal integration in rostral fastigial nucleus provides an estimate of body movement. J Neurosci 29:10499–10511. doi:10.1523/JNEUROSCI.1937-09.2009
CAS
PubMed Central
PubMed
Google Scholar
Brooks JX, Cullen KE (2013) The primate cerebellum selectively encodes unexpected self-motion. Curr Biol 23:947–955. doi:10.1016/j.cub.2013.04.029
CAS
PubMed
Google Scholar
Campbell SE, Glazener CM, Hunter KF, Cody JD, Moore KN (2012) Conservative management for postprostatectomy urinary incontinence. Cochrane Database Syst Rev 1:CD001843. doi:10.1002/14651858.CD001843.pub4
PubMed
Google Scholar
Cheung BS, Howard IP, Money KE (1991) Visually-induced sickness in normal and bilaterally labyrinthine-defective subjects. Aviat Space Environ Med 62:527–531
CAS
PubMed
Google Scholar
Christensen A, Giese MA, Sultan F, Mueller OM, Goericke SL, Ilg W, Timmann D (2014) An intact action-perception coupling depends on the integrity of the cerebellum. J Neurosci 34:6707–6716. doi:10.1523/JNEUROSCI.3276-13.2014
CAS
PubMed
Google Scholar
Cohen B, Matsuo V, Raphan T (1977) Quantitative analysis of the velocity characteristics of optokinetic nystagmus and optokinetic after-nystagmus. J Physiol 270:321–344
CAS
PubMed Central
PubMed
Google Scholar
Cohen B, Henn V, Raphan T, Dennett D (1981) Velocity storage, nystagmus, and visual-vestibular interactions in humans. Ann N Y Acad Sci 374:421–433
CAS
PubMed
Google Scholar
Cohen B, Dai M, Yakushin SB, Raphan T (2008) Baclofen, motion sickness susceptibility and the neural basis for velocity storage. Prog Brain Res 171:543–553. doi:10.1016/S0079-6123(08)00677-8
PubMed
Google Scholar
Cowings PS, Toscano WB (1982) The relationship of motion sickness susceptibility to learned autonomic control for symptom suppression. Aviat Space Environ Med 53:570–575
CAS
PubMed
Google Scholar
Cowings PS, Toscano WB (2000) Autogenic-feedback training exercise is superior to promethazine for control of motion sickness symptoms. J Clin Pharmacol 40:1154–1165
CAS
PubMed
Google Scholar
Cramer DB, Graybiel A, Oosterveld WJ (1978) Successful transfer of adaptation acquired in a slow rotation room to motion environments in Navy flight training. Acta Otolaryngol 85:74–84
CAS
PubMed
Google Scholar
Criscimagna-Hemminger SE, Bastian AJ, Shadmehr R (2010) Size of error affects cerebellar contributions to motor learning. J Neurophysiol 103:2275–2284. doi:10.1152/jn.00822.2009
PubMed Central
PubMed
Google Scholar
Cullen KE (2012) The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends Neurosci 35:185–196. doi:10.1016/j.tins.2011.12.001
CAS
PubMed Central
PubMed
Google Scholar
Cullen KE, Brooks JX, Sadehi SG (2009) How actions alter sensory processing: reafference in the vestibular system. Ann N Y Acad Sci 1164:29–36
PubMed Central
PubMed
Google Scholar
da Silva AA, do Carmo JM, Wang Z, Hall JE (2014) The brain melanocortin system, sympathetic control, and obesity hypertension. Physiology (Bethesda) 29:196–202. doi:10.1152/physiol.00061.2013
Google Scholar
Dai M, Raphan T, Cohen B (2007) Labyrinthine lesions and motion sickness susceptibility. Exp Brain Res 178:477–487. doi:10.1007/s00221-006-0759-1
PubMed Central
PubMed
Google Scholar
Dai M, Raphan T, Cohen B (2011) Prolonged reduction of motion sickness sensitivity by visual–vestibular interaction. Exp Brain Res 210:503–513. doi:10.1007/s00221-011-2548-8
PubMed Central
PubMed
Google Scholar
Daley MA, Usherwood JR (2010) Two explanations for the compliant running paradox: reduced work of bouncing viscera and increased stability in uneven terrain. Biol Lett 6:418–421. doi:10.1098/rsbl.2010.0175
PubMed Central
PubMed
Google Scholar
Davis JR, Jennings RT, Beck BG, Bagian JP (1993) Treatment efficacy of intramuscular promethazine for space motion sickness. Aviat Space Environ Med 64:230–233
CAS
PubMed
Google Scholar
Diamond SG, Markham CH (1991) Prediction of space motion sickness susceptibility by disconjugate eye torsion in parabolic flight. Aviat Space Environ Med 62:201–205
CAS
PubMed
Google Scholar
DiZio P, Lackner JR (1997) Circumventing side effects of immersive virtual environments. In: Smith MJ, Salvendy G, Koulbeck RJ (eds) Advances in human factors/ergonomics. Design of computing systems, vol 21, Elsevier, Amsterdam, pp 893–896
DiZio P, Lackner JR (2000) Motion sickness side effects and after-effects of immersive virtual environments created with helmet-mounted visual displays. In: NATO RTO-MP-54, the capability of virtual reality to meet military requirements, pp 11–1–11-4
DiZio P, Lackner JR (2002) Proprioceptive adaptation and aftereffects. In: Stanney K (ed) Handbook of virtual environments. Lawrence Erlbaum Associates, NY, pp 751–771
Google Scholar
DiZio P, Lackner JR, Evanoff JN (1987a) The influence of gravitoinertial force level on oculomotor and perceptual responses to Coriolis, cross-coupling stimulation. Aviat Space Environ Med 58:A218–A223
CAS
PubMed
Google Scholar
DiZio P, Lackner JR, Evanoff JN (1987b) The influence of gravitoinertial force level on oculomotor and perceptual responses to sudden stop stimulation. Aviat Space Environ Med 58:A224–A230
CAS
PubMed
Google Scholar
do Carmo JM, da Silva AA, Rushing JS, Pace B, Hall JE (2013) Differential control of metabolic and cardiovascular functions by melanocortin-4 receptors in proopiomelanocortin neurons. Am J Physiol Regul Integr Comp Physiol 305:R359–R368. doi:10.1152/ajpregu.00518.2012
PubMed
Google Scholar
Eller E, Hawks J, Relethford JH (2009) Local extinction and recolonization, species effective population size, and modern human origins. 2004. Hum Biol 81:805–824. doi:10.3378/027.081.0623
PubMed
Google Scholar
Evanoff JN, Lackner JR (1986) Influence of voluntary ocular deviation on vestibular nystagmus. Acta Otolaryngol 102:450–456
CAS
PubMed
Google Scholar
Gianaros PJ, Muth ER, Mordkoff JT, Levine ME, Stern RM (2001) A questionnaire for the assessment of the multiple dimensions of motion sickness. Aviat Space Environ Med 72:115–119
CAS
PubMed Central
PubMed
Google Scholar
Golding JF (1998) Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Res Bull 47:507–516
CAS
PubMed
Google Scholar
Golding JF (2006) Motion sickness susceptibility. Auton Neurosci 129:67–76. doi:10.1016/j.autneu.2006.07.019
PubMed
Google Scholar
Golding JF, Gresty MA (2013) Motion sickness and disorientation in vehicles. In: Bronstein AM (ed) Oxford textbook of vertigo and imbalance. Oxford University Press, Oxford, pp 293–306
Google Scholar
Golding JF, Stott JR (1997) Objective and subjective time courses of recovery from motion sickness assessed by repeated motion challenges. J Vestib Res 7:421–428
CAS
PubMed
Google Scholar
Gordon CR, Gonen A, Nachum Z, Doweck I, Spitzer O, Shupak A (2001) The effects of dimenhydrinate, cinnarizine and transdermal scopolamine on performance. J Psychopharmacol 15:167–172
CAS
PubMed
Google Scholar
Gosler AG, Greenwood JJD, Perrins C (2002) Predation risk and the cost of being fat. Nature 377:621–623. doi:10.1038/37762la0
Google Scholar
Graybiel A (1970) Susceptibility to acute motion sickness in blind persons. Aerosp Med 41:650–653
CAS
PubMed
Google Scholar
Graybiel A, Knepton J (1976) Sopite syndrome: a sometimes sole manifestation of motion sickness. Aviat Space Environ Med 47:873–882
CAS
PubMed
Google Scholar
Graybiel A, Knepton J (1978a) Bidirectional overadaptation achieved by executing leftward or rightward head movements during unidirectional rotation. Aviat Space Environ Med 49:1–4
CAS
PubMed
Google Scholar
Graybiel A, Knepton J (1978b) Prevention of motion sickness in flight maneuvers, aided by transfer of adaptation effects acquired in the laboratory: ten consecutive referrals. Aviat Space Environ Med 49:914–919
CAS
PubMed
Google Scholar
Graybiel A, Lackner JR (1980) Evaluation of the relationship between motion sickness symptomatology and blood pressure, heart rate, and body temperature. Aviat Space Environ Med 51:211–214
CAS
PubMed
Google Scholar
Graybiel A, Lackner JR (1983) Motion sickness: acquisition and retention of adaptation effects compared in three motion environments. Aviat Space Environ Med 54:307–311
CAS
PubMed
Google Scholar
Graybiel A, Lackner JR (1987) Treatment of severe motion sickness with antimotion sickness drug injections. Aviat Space Environ Med 58:773–776
CAS
PubMed
Google Scholar
Graybiel A, Wood CD (1969) Rapid vestibular adaptation in a rotating environment by means of controlled head movements. Aerosp Med 40:638–643
CAS
PubMed
Google Scholar
Graybiel A, Thompson AB, Deane FR, Fregly AR, Colehour JK, Ricks EL Jr (1968a) Transfer of habituation of motion sickness on change in body position between vertical and horizontal in a rotating environment. Aerosp Med 39:950–962
CAS
PubMed
Google Scholar
Graybiel A, Wood CD, Miller EF, Cramer DB (1968b) Diagnostic criteria for grading the severity of acute motion sickness. Aerosp Med 39:453–455
CAS
PubMed
Google Scholar
Graybiel A, Deane FR, Colehour JK (1969) Prevention of overt motion sickness by incremental exposure to otherwise highly stressful coriolis accelerations. Aerosp Med 40:142–148
CAS
PubMed
Google Scholar
Graybiel A, Miller EF 2nd, Homick JL (1975) Individual differences in susceptibility to motion sickness among six Skylab astronauts. Acta Astronaut 2:155–174
CAS
PubMed
Google Scholar
Graybiel A, Knepton J, Shaw J (1976) Prevention of experimental motion sickness by scopolamine absorbed through the skin. Aviat Space Environ Med 47:1096–1100
CAS
PubMed
Google Scholar
Graybiel A, Miller EF 2nd, Homick JL (1977) Experiment M-131. Human vestibular function. NASA SP-377, US Govt Print Office, Washington, pp 74–103
Google Scholar
Gresty MA, Golding JF (2009) Impact of vertigo and spatial disorientation on concurrent cognitive tasks. Ann N Y Acad Sci 1164:263–267. doi:10.1111/j.1749-6632.2008.03744.x
PubMed
Google Scholar
Gresty MA, Golding JF, Le H, Nightingale K (2008) Cognitive impairment by spatial disorientation. Aviat Space Environ Med 79:105–111
PubMed
Google Scholar
Guedry FE Jr, Benson AJ (1978) Coriolis cross-coupling effects: disorienting and nauseogenic or not? Aviat Space Environ Med 49:29–35
PubMed
Google Scholar
Guedry FE Jr, Graybiel A (1962) Compensatory nystagmus conditioned during adaptation to living in a rotating room. J Appl Physiol 17:398–404
PubMed
Google Scholar
Guingard JC, McCauley ME (1990) The accelerative stimulus for motion sickness. In: Crampton GH (ed) Motion and space sickness. CRC Press, Boca Raton, pp 123–152
Google Scholar
Harding RM, Fullerton SM, Griffiths RC et al (1997) Archaic African and Asian lineages in the genetic ancestry of modern humans. Am J Hum Genet 60:772–789
CAS
PubMed Central
PubMed
Google Scholar
Held R, Hein A (1958) Adaptation to disarranged hand-eye coordination contingent upon reafferent stimulation. Percept Mot Skills 8:87–90
Google Scholar
Held R, Hein A (1963) Movement-produced stimulation in development of visually guided behavior. J Comp Physiol Psychol 56:872. doi:10.1037/H0040546
CAS
PubMed
Google Scholar
Hettinger LJ, Riccio GE (1992) Visually-induced motion sickness in virtual environments. Presence 1:306–310
Google Scholar
Higginson AD, McNamara JM, Houston AI (2012) The starvation-predation trade-off predicts trends in body size, muscularity, and adiposity between and within Taxa. Am Nat 179:338–350. doi:10.1086/664457
PubMed
Google Scholar
Hodges PW, Sapsford R, Pengel LH (2007) Postural and respiratory functions of the pelvic floor muscles. Neurourol Urodyn 26:362–371. doi:10.1002/nau.20232
CAS
PubMed
Google Scholar
Hu S, Stern RM (1998) Optokinetic nystagmus correlates with severity of vection-induced motion sickness and gastric tachyarrhythmia. Aviat Space Environ Med 69:1162–1165
CAS
PubMed
Google Scholar
Jacob RG, Woody SR, Clark DB et al (1993) Discomfort with space and motion: a possible marker of vestibular dysfunction assessed by the Situational Characteristics Questionnaire. J Psychopathol Behav Assess 15:299–324
Google Scholar
Jacob RG, Redfern MS, Furman JM (1995) Optic flow-induced sway in anxiety disorders associated with space and motion discomfort. J Anxiety Disord 9:411–425
Google Scholar
Jian BJ, Shintani T, Emanuel BA, Yates BJ (2002) Convergence of limb, visceral, and vertical semicircular canal or otolith inputs onto vestibular nucleus neurons. Exp Brain Res 144:247–257. doi:10.1007/s00221-002-1042-8
CAS
PubMed
Google Scholar
Jian BJ, Acernese AW, Lorenzo J, Card JP, Yates BJ (2005) Afferent pathways to the region of the vestibular nuclei that participates in cardiovascular and respiratory control. Brain Res 1044:241–250. doi:10.1016/j.brainres.2005.03.010
CAS
PubMed
Google Scholar
Johnson WH, Sunahara FA, Landolt JP (1999) Importance of the vestibular system in visually induced nausea and self-vection. J Vestib Res 9:83–87
CAS
PubMed
Google Scholar
Kaplan E, Ventura J, Pierobon A, Bakshi A, DiZio P, Lackner JR (2014) Influence of sleep deprivation on susceptibility to motion sickness and performance on cognitive and motor tasks (in preparation)
Kellogg RS, Kennedy RS, Graybiel A (1965) Motion sickness symptomatology of labyrinthine defective and normal subjects during zero gravity maneuvers. Aerosp Med 36:315–318
CAS
PubMed
Google Scholar
Kennedy RS (1975) Motion sickness questionnaire and field independence scores as predictors of success in naval aviation training. Aviat Space Environ Med 46:1349–1352
CAS
PubMed
Google Scholar
Kennedy RS, Graybiel A, McDonough RG, Beckwith RD (1968) Symptomology under storm conditions in the North Atlantic in control subjects and in person with bilateral labyrinthine defects. Acta Otolaryngol 66:533–540
CAS
PubMed
Google Scholar
Kennedy RS, Fowlkes JE, Berbaum KS, Lilienthal MG (1992a) Use of a motion sickness history questionnaire for prediction of simulator sickness. Aviat Space Environ Med 63:588–593
CAS
PubMed
Google Scholar
Kennedy RS, Lane NE, Lilienthal MG, Berbaum KS, Hettinger LJ (1992b) Profile analysis of simulator sickness symptoms: application to virtual environment systems. Presence 1:295–301
Google Scholar
Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG (1993) Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Aviat Psych 3:203–220
Google Scholar
Kennedy RS, Drexler J, Kennedy RC (2010) Research in visually induced motion sickness. Appl Ergon 41:494–503. doi:10.1016/j.apergo.2009.11.006
PubMed
Google Scholar
Klarer M, Arnold M, Gunther L, Winter C, Lanhans W, Meyer U (2014) Gut vagal afferents differentially modulate innate anxiety and learned fear. J Neurosci 34:7067–7076
CAS
PubMed
Google Scholar
Klocker N, Hanschke W, Toussaint S, Verse T (2001) Scopolamine nasal spray in motion sickness: a randomised, controlled, and crossover study for the comparison of two scopolamine nasal sprays with oral dimenhydrinate and placebo. Eur J Pharm Sci 13:227–232
CAS
PubMed
Google Scholar
Koch KL (1999) Illusory self-motion and motion sickness: a model for brain-gut interactions and nausea. Dig Dis Sci 44:53S–57S
CAS
PubMed
Google Scholar
Kompf D, Piper HF (1987) Eye movements and vestibulo-ocular reflex in the blind. J Neurol 234:337–341
CAS
PubMed
Google Scholar
Kurtzer I, DiZio P, Lackner J (2003) Task-dependent motor learning. Exp Brain Res 153:128–132. doi:10.1007/s00221-003-1632-0
PubMed
Google Scholar
Lackner JR (1981) Some aspects of sensory-motor control and adaptation in man. In: Walk RD, Pick HL (eds) Intersensory perception and sensory integration. Plenum, New York, pp 143–173
Google Scholar
Lackner JR (1984) Motion sickness: mechanisms, prevention, and treatment. In: Technical Evaluation Report A-C-, VII-X (ed)
Lackner JR, DiZio P (1988) Visual stimulation affects the perception of voluntary leg movements during walking. Perception 17:71–80
CAS
PubMed
Google Scholar
Lackner JR, DiZio P (1989) Altered sensory-motor control of the head as an etiological factor in space-motion sickness. Percept Mot Skills 68:784–786
Google Scholar
Lackner JR, DiZio P (1992) Gravitational, inertial, and Coriolis force influence on nystagmus, motion sickness, and perceived head trajectory. In: Berthoz A, Graf W, Vidal PP (eds) The head-neck sensory-motor symposium. Oxford University Press, NY, pp 216–222
Google Scholar
Lackner JR, DiZio P (2000a) Human orientation and movement control in weightless and artificial gravity environments. Exp Brain Res 130:2–26
CAS
PubMed
Google Scholar
Lackner JR, DiZio PA (2000b) Aspects of body self-calibration. Trends Cogn Sci 4:279–288
CAS
PubMed
Google Scholar
Lackner JR, DiZio P (2003) Cyber adaptation syndrome. In: Adelman G, Smith B (eds) Encyclopedia of neuroscience, CD-ROM, version edn. Elsevier Science, Amsterdam
Google Scholar
Lackner JR, Dizio P (2006) Space motion sickness. Exp Brain Res 175:377–399. doi:10.1007/s00221-006-0697-y
PubMed
Google Scholar
Lackner JR, DiZio P (2009) Angular displacement perception modulated by force background. Exp Brain Res 195:335–343. doi:10.1007/s00221-009-1785-6
PubMed
Google Scholar
Lackner JR, Graybiel A (1980) Elicitation of motion sickness by head movements in the microgravity phase of parabolic flight maneuvers. Aviat Space Environ Med 55:513–520
Google Scholar
Lackner JR, Graybiel A (1983) Etiological factors in space motion sickness. Aviat Space Environ Med 54:675–681
CAS
PubMed
Google Scholar
Lackner JR, Graybiel A (1984a) Elicitation of motion sickness by head movements in the microgravity phase of parabolic flight maneuvers. Aviat Space Environ Med 55:513–520
CAS
PubMed
Google Scholar
Lackner JR, Graybiel A (1984b) Influence of gravitoinertial force level on apparent magnitude of Coriolis cross-coupled angular accelerations and motion sickness. In: NATO-AGARD aerospace medical panel symposium on motion sickness: mechanisms, prediction, prevention and treatment. AGARD-CP372, vol 22, pp 1–7
Lackner JR, Graybiel A (1985) Head movements elicit motion sickness during exposure to microgravity and macrogravity acceleration levels. In: Igarashi M, Black FO (eds) Proceedings of the VII international symposium: vestibular and visual control of posture and locomotor equilibrium. Karger, Basel, pp 170–176
Google Scholar
Lackner JR, Graybiel A (1986a) The effective intensity of Coriolis, cross-coupling stimulation is gravitoinertial force dependent: implications for space motion sickness. Aviat Space Environ Med 57:229–235
CAS
PubMed
Google Scholar
Lackner JR, Graybiel A (1986b) Head movements in non-terrestrial force environments elicit motion sickness: implications for the etiology of space motion sickness. Aviat Space Environ Med 57:443–448
CAS
PubMed
Google Scholar
Lackner JR, Graybiel A (1986c) Sudden emesis following parabolic flight maneuvers: implications for space motion sickness. Aviat Space Environ Med 57:343–347
CAS
PubMed
Google Scholar
Lackner JR, Graybiel A (1994) Use of promethazine to hasten adaptation to provocative motion. J Clin Pharmacol 34:644–648
CAS
PubMed
Google Scholar
Lackner JR, Teixeira RA (1977) Optokinetic motion sickness: continuous head movements attenuate the visual induction of apparent self-rotation and symptoms of motion sickness. Aviat Space Environ Med 48:248–253
CAS
PubMed
Google Scholar
Lackner JR, Graybiel A, DiZio PA (1991) Altered sensorimotor control of the body as an etiological factor in space motion sickness. Aviat Space Environ Med 62:765–771
CAS
PubMed
Google Scholar
Lawson BD (1993) Physiological responses to visually-induced motion sickness. In: vol Ph.D. Brandeis University, Waltham
Lawson BD, Mead AM (1998) The sopite syndrome revisited: drowsiness and mood changes during real or apparent motion. Acta Astronaut 43:181–192
CAS
PubMed
Google Scholar
Lawther A, Griffin MJ (1986) The motion of a ship at sea and the consequent motion sickness amongst passengers. Ergonomics 29:535–552. doi:10.1080/00140138608968289
CAS
PubMed
Google Scholar
Leigh RJ, Zee DS (1980) Eye movements of the blind. Invest Ophthalmol Vis Sci 19:328–331
CAS
PubMed
Google Scholar
Leslie KR, Stickgold R, Dizio P, Lackner JR, Hobson JA (1997) The effect of optokinetic stimulation on daytime sleepiness. Arch Ital Biol 135:219–228
CAS
PubMed
Google Scholar
Levine ME, Chillas JC, Stern RM, Knox GW (2000) The effects of serotonin (5-HT3) receptor antagonists on gastric tachyarrhythmia and the symptoms of motion sickness. Aviat Space Environ Med 71:1111–1114
CAS
PubMed
Google Scholar
Levinthal DJ, Strick PL (2012) The motor cortex communicates with the kidney. J Neurosci 32:6726–6731. doi:10.1523/JNEUROSCI.0406-12.2012
CAS
PubMed Central
PubMed
Google Scholar
Lien HC, Sun WM, Chen YH, Kim H, Hasler W, Owyang C (2003) Effects of ginger on motion sickness and gastric slow-wave dysrhythmias induced by circular vection. Am J Physiol Gastrointest Liver Physiol 284:G481–G489. doi:10.1152/ajpgi.00164.2002
CAS
PubMed
Google Scholar
Lovejoy CO (1988) Evolution of human walking. Sci Am 259:118–125
CAS
PubMed
Google Scholar
Mather JA, Lackner JR (1981) Adaptation to visual displacement: contribution of proprioceptive, visual, and attentional factors. Perception 10:367–374
CAS
PubMed
Google Scholar
Matsangas P, McCauley M (2014a) Yawning as a behavioral marker of mild motion sickness and sopite syndrome. Aviat Space Environ Med 85:658–661
PubMed
Google Scholar
Matsangas P, McCauley M (2014b) Sopite syndrome: A revised definition. Aviat Space Environ Med 85:672–673
PubMed
Google Scholar
McCauley MF, Sharkey TJ (1992) Cybersickness: perception of self-motion in virtual environments. Presence 3:311–318
Google Scholar
McEwen BS, Wingfield JC (2010) What is in a name? Integrating homeostasis, allostasis and stress. Horm Behav 57:105–111. doi:10.1016/J.Yhbeh.2009.09.011
PubMed Central
PubMed
Google Scholar
Miller EF 2nd, Graybiel A (1970a) Motion sickness produced by head movement as a function of rotational velocity. Aerosp Med 41:1180–1184
PubMed
Google Scholar
Miller EF 2nd, Graybiel A (1970b) A provocative test for grading susceptibility to motion sickness yielding a single numerical score. Acta Otolaryngol Suppl 274:1–20
PubMed
Google Scholar
Miller EF 2nd, Graybiel A (1972) Semicircular canals as a primary etiological factor in motion sickness. Aerosp Med 43:1065–1074
PubMed
Google Scholar
Miller EF, Graybiel A (1973) Experiment M-131-Human vestibular function. Aerosp Med 44:593–608
PubMed
Google Scholar
Miller KE, Muth ER (2004) Efficacy of acupressure and acustimulation bands for the prevention of motion sickness. Aviat Space Environ Med 75:227–234
PubMed
Google Scholar
Miller AD, Wilson VJ (1983) Vestibular-induced vomiting after vestibulocerebellar lesions. Brain Behav Evol 23:26–31
CAS
PubMed
Google Scholar
Miller AD, Nonaka S, Lakos SF, Tan LK (1990) Diaphragmatic and external intercostal muscle control during vomiting: behavior of inspiratory bulbospinal neurons. J Neurophysiol 63:31–36
CAS
PubMed
Google Scholar
Miller AD, Nonaka S, Jakus J (1994) Brain areas essential or non-essential for emesis. Brain Res 647:255–264
CAS
PubMed
Google Scholar
Miller AD, Grelot L (1996) The neural basis of nausea and vomiting. In: Yates BJ, Miller AD (eds) Vestibular autonomic regulation. CRC Press, Boca Raton
Google Scholar
Money KE (1970) Motion sickness. Physiol Rev 50:1–39
CAS
PubMed
Google Scholar
Money KE (1990) Motion sickness and evolution. In: Crampton GH (ed) Motion and space sickness. CRC Press, Boca Raton
Google Scholar
Money KE, Cheung BS (1983) Another function of the inner-ear: facilitation of the emetic response to poisons. Aviat Space Environ Med 54:208–211
CAS
PubMed
Google Scholar
Money KE, Lackner JR, Cheung RSK (1996) The autonomic nervous system and motion sickness. In: Yates BJ, Miller AD (eds) Vestibular autonomic regulation. CRC Press, Boca Raton, pp 147–173
Google Scholar
Moy JD, Miller DJ, Catanzaro MF et al (2012) Responses of neurons in the caudal medullary lateral tegmental field to visceral inputs and vestibular stimulation in vertical planes. Am J Physiol Regul Integr Comp Physiol 303:R929–R940. doi:10.1152/ajpregu.00356.2012
CAS
PubMed Central
PubMed
Google Scholar
Muth ER, Stern RM, Thayer JF, Koch KL (1996) Assessment of the multiple dimensions of nausea: the Nausea Profile (NP). J Psychosom Res 40:511–520
CAS
PubMed
Google Scholar
Nachum Z, Shahal B, Shupak A et al (2001) Scopolamine bioavailability in combined oral and transdermal delivery. J Pharmacol Exp Ther 296:121–123
CAS
PubMed
Google Scholar
Nachum Z, Shupak A, Gordon CR (2006) Transdermal scopolamine for prevention of motion sickness: clinical pharmacokinetics and therapeutic applications. Clin Pharmacokinet 45:543–566. doi:10.2165/00003088-200645060-00001
CAS
PubMed
Google Scholar
Napadow V, Sheehan JD, Kim J et al (2013) The brain circuitry underlying the temporal evolution of nausea in humans. Cereb Cortex 23:806–813. doi:10.1093/cercor/bhs073
PubMed Central
PubMed
Google Scholar
Napier JR (1993) Hands. Princeton University Press, Princeton
Google Scholar
O’Hanlon JF, McCauley ME (1974) Motion sickness incidence as a function of the frequency and acceleration of vertical sinusoidal motion. Aerosp Med 45:366–369
PubMed
Google Scholar
Oman CM (1982) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Otolaryngol Suppl 392:1–44
CAS
PubMed
Google Scholar
Oman CM (1987) Spacelab experiments on space motion sickness. Acta Astronaut 15:55–66
CAS
PubMed
Google Scholar
Oman CM (1990) Motion sickness: a synthesis and evaluation of the sensory conflict theory. Can J Physiol Pharmacol 68:294–303
CAS
PubMed
Google Scholar
Oman CM (1998) Sensory conflict theory and space sickness: our changing perspective. J Vestib Res 8:51–56
CAS
PubMed
Google Scholar
Oman CM, Lichtenberg BK, Money KE, McCoy RK (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 4. Space motion sickness: symptoms, stimuli, and predictability. Exp Brain Res 64:316–334
CAS
PubMed
Google Scholar
Oman CM, Lichtenberg BK, Money KE (1990) Space motion sickness monitoring experiment: Spacelab 1. In: Crampton GH (ed) Motion and space motion sickness. CRC Press, Boca Raton, pp 217–246
Google Scholar
Owen N, Leadbetter AG, Yardley L (1998) Relationship between postural control and motion sickness in healthy subjects. Brain Res Bull 47:471–474. doi:10.1016/S0361-9230(98)00101-4
CAS
PubMed
Google Scholar
Paillard AC, Quarck G, Paolino F, Denise P, Paolino M, Golding JF, Ghulyan-Bedikian V (2013) Motion sickness susceptibility in healthy subjects and vestibular patients: effects of gender, age and trait-anxiety. J Vestib Res 23:203–209. doi:10.3233/VES-130501
CAS
PubMed
Google Scholar
Panic H, Panic AS, DiZio P, Lackner JR (2013a) Active control and perception of the vertical. Soc Neurosci Abstr 367:03
Google Scholar
Panic H, Panic AS, DiZio P, Lackner JR (2013b) Visual and vestibular cues for orientation and balance. Soc Neurosci Abstr 367:04
Google Scholar
Panic H, Panic AS, DiZio P, Lackner J (2014a) Dynamic balance and the perception of upright are dissociable J Neurophysiol (in submission)
Panic H, Panic AS, DiZio P, Lackner JR (2014b) Effect of gravity on active balance using visual or vestibular cues. J Neurophysiol (in submission)
Porterfield JA (1985) Dynamic stabilization of the trunk. J Orthop Sports Phys Ther 6:271–277
CAS
PubMed
Google Scholar
Potts JT, Rybak IA, Paton JF (2005) Respiratory rhythm entrainment by somatic afferent stimulation. J Neurosci 25:1965–1978. doi:10.1523/JNEUROSCI.3881-04.2005
CAS
PubMed
Google Scholar
Quarck G, Lhuisset L, Etard O, Denise P (2009) Eye eccentricity modifies the perception of whole-body rotation. Exp Brain Res 196:295–301. doi:10.1007/s00221-009-1828-z
PubMed
Google Scholar
Reason JT (1968) Relations between motion sickness susceptibility spiral after-effect and loudness estimation. Br J Psychol 59:385
CAS
PubMed
Google Scholar
Reason JT (1969) Motion sickness—some theoretical considerations. Int J Man-Machine Stud 1:21–38
Google Scholar
Reason JT (1970) Motion sickness: a special case of sensory rearrangement. Adv Sci 26:386–393
CAS
PubMed
Google Scholar
Reason JT (1978) Motion sickness adaptation: a neural mismatch model. J R Soc Med 71:819–829
CAS
PubMed Central
PubMed
Google Scholar
Reason JT, Brand JJ (1975) Motion sickness. Academic Press, London
Google Scholar
Reason JT, Graybiel A (1969) Adaptation to Coriolis accelerations: its transfer to the opposite direction of rotation as a function of intervening activity at zero velocity. NAMI-1086, NASA ORDER R-93. Naval Aerospace Medical Institute, Pensacola, FL
Reason JT, Graybiel A (1970) Progressive Adaptation to coriolis accelerations associated with 1-rpm increments in velocity of slow rotation room. Aerosp Med 41:73
CAS
PubMed
Google Scholar
Riccio GE, Stoffregen TA (1991) An ecological theory of motion sickness and postural instability. Ecol Psychol 3:195–240
Google Scholar
Rice CD, Weber SA, Waggoner AL, Jessell ME, Yates BJ (2010) Mapping of neural pathways that influence diaphragm activity and project to the lumbar spinal cord in cats. Exp Brain Res 203:205–211. doi:10.1007/s00221-010-2197-3
CAS
PubMed Central
PubMed
Google Scholar
Rolnick A, Lubow RE (1991) Why is the driver rarely motion sick—the Role of controllability in motion sickness. Ergonomics 34:867–879. doi:10.1080/00140139108964831
CAS
PubMed
Google Scholar
Rossiter CD, Hayden NL, Stocker SD, Yates BJ (1996) Changes in outflow to respiratory pump muscles produced by natural vestibular stimulation. J Neurophysiol 76:3274–3284
CAS
PubMed
Google Scholar
Saab CY, Willis WD (2001) Nociceptive visceral stimulation modulates the activity of cerebellar Purkinje cells. Exp Brain Res 140:122–126
CAS
PubMed
Google Scholar
Scott GB (1994) Effects of short-term whole body vibration on animals with particular reference to poultry. Worlds Poult Sci J 50:25–38
Google Scholar
Serra J, Azpiroz F, Malagelada JR (1998) Modulation of gut perception in humans by spatial summation phenomena. J Physiol 506(Pt 2):579–587
CAS
PubMed Central
PubMed
Google Scholar
Sherman KR, Keller EL (1986) Vestibulo-ocular reflexes of adventitiously and congenitally blind adults. Invest Ophthalmol Vis Sci 27:1154–1159
CAS
PubMed
Google Scholar
Simmons RG, Phillips JB, Lojewski RA, Wang ZW, Boyd JL, Putcha L (2010) The efficacy of low-dose intranasal scopolamine for motion sickness. Aviat Space Environ Med 81:405–412. doi:10.3357/Asem.2668.2010
CAS
PubMed
Google Scholar
Simons RS (1999) Running, breathing and visceral motion in the domestic rabbit (Oryctolagus cuniculus): testing visceral displacement hypotheses. J Exp Biol 202:563–577
CAS
PubMed
Google Scholar
Smart LJ, Pagulayan RJ, Stoffregen TA (1998) Self-induced motion sickness in unperturbed stance. Brain Res Bull 47:449–457. doi:10.1016/S0361-9230(98)00103-8
PubMed
Google Scholar
Smart LJ Jr, Stoffregen TA, Bardy BG (2002) Visually induced motion sickness predicted by postural instability. Hum Factors 44:451–465
PubMed
Google Scholar
Sohn JW, Harris LE, Berglund ED et al (2013) Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neurons. Cell 152:612–619. doi:10.1016/j.cell.2012.12.022
CAS
PubMed Central
PubMed
Google Scholar
Speakman JR (2014) If body fatness is under physiological regulation, then how come we have an obesity epidemic? Physiology 29:88–98. doi:10.1152/Physiol.00053.2013
CAS
PubMed
Google Scholar
Stanney K, Salvendy G, Deisinger J et al (1998) Aftereffects and sense of presence in virtual environments: formulation of a research and development agenda. Int J Hum Comput Interact 10:135–187. doi:10.1207/S15327590ijhc1002_3
CAS
PubMed
Google Scholar
Stern RM, Koch KL, Leibowitz HW, Linblad IM, Shupert CL, Stewart WR (1985) Tachygastria and motion sickness. Aviat Space Environ Med 56:1074–1077
CAS
PubMed
Google Scholar
Stern RM, Koch KL, Stewart WR, Lindblad IM (1987) Spectral analysis of tachygastria recorded during motion sickness. Gastroenterology 92:92–97
CAS
PubMed
Google Scholar
Stern RM, Hu SQ, Leblanc R, Koch KL (1993) Chinese hyper-susceptibility to vection-induced motion sickness. Aviat Space Environ Med 64:827–830
CAS
PubMed
Google Scholar
Stoffregen TA, Riccio GE (1988) An ecological theory of orientation and the vestibular system. Psychol Rev 95:3–14
CAS
PubMed
Google Scholar
Stoffregen TA, Smart LJ Jr (1998) Postural instability precedes motion sickness. Brain Res Bull 47:437–448
CAS
PubMed
Google Scholar
Stoffregen TA, Yoshida K, Villard S, Scibora L, Bardy BG (2010) Stance width influences postural stability and motion sickness. Ecol Psychol 22:169–191
Google Scholar
Stoffregen TA, Chen YC, Koslucher FC (2014) Motion control, motion sickness, and the postural dynamics of mobile devices. Exp Brain Res 232:1389–1397. doi:10.1007/s00221-014-3859-3
PubMed
Google Scholar
Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434. doi:10.1146/annurev.neuro.31.060407.125606
CAS
PubMed
Google Scholar
Sugiyama Y, Suzuki T, DeStefino VJ, Yates BJ (2011) Integrative responses of neurons in nucleus tractus solitarius to visceral afferent stimulation and vestibular stimulation in vertical planes. Am J Physiol Regul Integr Comp Physiol 301:R1380–R1390. doi:10.1152/ajpregu.00361.2011
CAS
PubMed Central
PubMed
Google Scholar
Suzuki T, Sugiyama Y, Yates BJ (2012) Integrative responses of neurons in parabrachial nuclei to a nauseogenic gastrointestinal stimulus and vestibular stimulation in vertical planes. Am J Physiol Regul Integr Comp Physiol 302:R965–R975. doi:10.1152/ajpregu.00680.2011
CAS
PubMed Central
PubMed
Google Scholar
Thornton WE, Bonato F (2013) Space motion sickness and motion sickness: symptoms and etiology. Aviat Space Environ Med 84:716–721
PubMed
Google Scholar
Treisman M (1977) Motion sickness: an evolutionary hypothesis. Science 197:493–495
CAS
PubMed
Google Scholar
Ventura J, DiZio P, Lackner J (2014) A simple test to predict susceptibility to motion sickness. In Preparation
Villard SJ, Flanagan MB, Albanese GM, Stoffregen TA (2008) Postural instability and motion sickness in a virtual moving room. Hum Factors 50:332–345
PubMed Central
PubMed
Google Scholar
Von Bekesy G (1967) Sensory inhibition. Princeton University Press
Wang SC, Chinn HI (1956) Experimental motion sickness in dogs; importance of labyrinth and vestibular cerebellum. Am J Physiol 185:617–623
CAS
PubMed
Google Scholar
Warwick-Evans LA, Beaumont S (1991) An experimental evaluation of sensory conflict versus postural control theories of motion sickness. Ecol Psychol 7:163–179
Google Scholar
Warwick-Evans LA, Symons N, Fitch T, Burrows L (1998) Evaluating sensory conflict and postural instability. Theories of motion sickness. Brain Res Bull 47:465–469
CAS
PubMed
Google Scholar
Wiker SF, Kennedy RS, Mccauley ME, Pepper RL (1979) Susceptibility to seasickness—influence of hull design and steaming direction. Aviat Space Environ Med 50:1046–1051
CAS
PubMed
Google Scholar
Wilson FR (1998) The hand: how its use shapes the brain, language, and human culture. Pantheon Books, New York
Google Scholar
Wilson VJ, Melvill Jones G (1979) Mammalian vestibular physiology. Plenum Press, New York
Google Scholar
Wingfield JC (2003) Control of behavioural strategies for capricious environments. Anim Behav 66:807–815. doi:10.1006/Anbe.2003.2298
Google Scholar
Wood CD, Graybiel A (1968) Evaluation of sixteen anti-motion sickness drugs under controlled laboratory conditions. Aerosp Med 39:1341–1344
CAS
PubMed
Google Scholar
Wood CD, Graybiel A (1970) A theory of motion sickness based on pharmacological reactions. Clin Pharmacol Ther 11:621–629
CAS
PubMed
Google Scholar
Wood CD, Manno JE, Manno BR, Odenheimer RC, Bairnsfather LE (1986) The effect of antimotion sickness drugs on habituation to motion. Aviat Space Environ Med 57:539–542
CAS
PubMed
Google Scholar
Yardley L, Luxon L, Lear S, Britton J, Bird J (1994) Vestibular and posturographic test results in people with symptoms of panic and agoraphobia. J Audiol Med 3:48–65
Google Scholar
Yates BJ (1996a) Vestibular influences on cardiovascular control. In: Yates BJ, Miller AD (eds) Vestibular autonomic regulation. CRC Press, Boca Raton, pp 97–111
Google Scholar
Yates BJ (1996b) Vestibular influences on the autonomic nervous system. Ann N Y Acad Sci 781:458–473
CAS
PubMed
Google Scholar
Yates BJ, Bronstein AM (2005) The effects of vestibular system lesions on autonomic regulation: observations, mechanisms, and clinical implications. J Vestib Res 15:119–129
PubMed
Google Scholar
Yates BJ, Miller DM (2009) Integration of nonlabyrinthine inputs by the vestibular system: role in compensation following bilateral damage to the inner ear. J Vestib Res 19:183–189. doi:10.3233/VES-2009-0337
PubMed Central
PubMed
Google Scholar
Yates BJ, Balaban CD, Miller AD, Endo K, Yamaguchi Y (1995a) Vestibular inputs to the lateral tegmental field of the cat: potential role in autonomic control. Brain Res 689:197–206
CAS
PubMed
Google Scholar
Yates BJ, Siniaia MS, Miller AD (1995b) Descending pathways necessary for vestibular influences on sympathetic and inspiratory outflow. Am J Physiol 268:R1381–R1385
CAS
PubMed
Google Scholar
Yates BJ, Miller AD, Lucot JB (1998) Physiological basis and pharmacology of motion sickness: an update. Brain Res Bull 47:395–406
CAS
PubMed
Google Scholar
Yates BJ, Holmes MJ, Jian BJ (2000) Adaptive plasticity in vestibular influences on cardiovascular control. Brain Res Bull 53:3–9
CAS
PubMed
Google Scholar
Yates BJ, Billig I, Cotter LA, Mori RL, Card JP (2002) Role of the vestibular system in regulating respiratory muscle activity during movement. Clin Exp Pharmacol Physiol 29:112–117
CAS
PubMed
Google Scholar
Yates BJ, Catanzaro MF, Miller DJ, McCall AA (2014) Integration of vestibular and emetic gastrointestinal signals that produce nausea and vomiting: potential contributions to motion sickness. Exp Brain Res. doi:10.1007/s00221-014-3937-6
Google Scholar
Yen-Pik Sang F, Billar J, Gresty MA, Golding JF (2005) Effect of a novel motion desensitization training regime and controlled breathing on habituation to motion sickness. Percept Mot Skills 101:244–256
PubMed
Google Scholar