Skip to main content

Advertisement

Log in

Phases of intermediate filament composition in Bergmann glia following cerebellar injury in adult rat

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In contrast to other astroglial populations, Bergmann glia (BG) form a strictly arranged system where each cell contacts the pia, with an architecture and function resembling that of immature radial glia. As a consequence, a post-lesion glial reaction is expected to differ from that observed in other parts of the brain. The present study describes the characteristic phases of intermediate filament protein formation during the different stages of BG response following injury and compares them with reactive glial patterns of other brain areas and patterns of glial development. The progress of Bergmann glial repair shares similar features with glial development. Following injury, BG developed nestin immunopositivity; then, colocalization of nestin and GFAP was observed. Finally, exclusively GFAP-immunopositive BG were restituted, denser, and thicker than before. The changes of intermediate filament composition appeared at first at the proximal and distal ends of BG fibers, i.e., at the perikaryal “root” and in the pial endfeet. No astrocytic invasion was present in the molecular layer, nor any distinct rearrangement of BG. These results demonstrate the role of the resident glia in glial reactions and refer to the priority of gliomeningeal connections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ajtai BM, Kalman M (1998) Glial fibrillary acidic protein expression but no glial demarcation follows the lesion in the molecular layer of cerebellum. Brain Res 802:285–288

    Article  CAS  PubMed  Google Scholar 

  • Alcock J, Sottile V (2009) Dynamic distribution and stem cell characteristics of Sox1-expressing cells in the cerebellar cortex. Cell Res 19:1324–1333

    Article  CAS  PubMed  Google Scholar 

  • Alcock J, Lowe J, England T, Bath P, Sottile V (2009) Expression of Sox1, Sox2 and Sox9 is maintained in adult human cerebellar cortex. Neurosci Lett 450:114–116

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh JB (1970) The proliferation of astrocytes around a needle wound in the rat brain. J Anat 106:471–487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clarke SR, Shetty AK, Bradley JL, Turner DA (1994) Reactive astrocytes express the embryonic intermediate neurofilament nestin. NeuroReport 5:1885–1888

    Article  CAS  PubMed  Google Scholar 

  • Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes: implications for their role in neurologic disease. Neuroscience 54:15–36

    Article  CAS  PubMed  Google Scholar 

  • Eliasson C, Sahlgren C, Berthold CH, Stakeberg J, Celis JE, Betsholtz C, Eriksson JE, Pekny M (1999) Intermediate filament protein partnership in astrocytes. J Biol Chem 274:23996–24006

    Article  CAS  PubMed  Google Scholar 

  • Fernaud-Espinosa I, Nieto-Sampedro M, Bovolenta P (1993) Differential activation of microglia and astrocytes in aniso- and isomorphic gliotic tissue. Glia 8:277–291

    Article  CAS  PubMed  Google Scholar 

  • Frisen J, Johansson CB, Torok C, Risling M, Lendahl U (1995) Rapid, widespread, and long lasting induction of nestin contributes to the generation of glial scar tissue after CNS injury. J Cell Biol 131:453–464

    Article  CAS  PubMed  Google Scholar 

  • Hatten ME, Liem RHK, Shelanski ML, Mason CA (1991) Astroglia in CNS injury. Glia 4:233–243

    Article  CAS  PubMed  Google Scholar 

  • Hatton JD, Finkelstein JP, HS U (1993) Native astrocytes do not migrate de novo or after local trauma. Glia 9:18–24

    Article  CAS  PubMed  Google Scholar 

  • Hockfield S, McKay RDG (1985) Identification of major cell classes in the developing mammalian nervous system. J Neurosci 5:3310–3328

    CAS  PubMed  Google Scholar 

  • Holmin S, Almqvist P, Lendahl U, Mathiesen T (1997) Adult nestin-expressing subependymal cells differentiate to astrocytes in response to brain injury. Eur J Neurosci 9:65–75

    Article  CAS  PubMed  Google Scholar 

  • Janeczko K (1988) The proliferative response of astrocytes to injury in neonatal rat brain. A combined immunocytochemical and autoradiographic study. Brain Res 456:280–285

    Article  CAS  PubMed  Google Scholar 

  • Janeczko K (1989) Spatiotemporal patterns of the astroglial proliferation in rat brain injured at the postmitotic stage of postnatal development: a combined immunocytochemical and autoradiographic study. Brain Res 485:236–243

    Article  CAS  PubMed  Google Scholar 

  • Janeczko K (1993) Co-expression of GFAP and vimentin in astrocytes proliferating in response to injury in the mouse cerebral hemisphere. A combined autoradiographic and double immunocytochemical study. Int J Dev Neurosci 11:139–147

    Article  CAS  PubMed  Google Scholar 

  • Kalman M, Ajtai BM (2001) A comparison of intermediate filament markers for presumptive astroglia in the developing rat neocortex: immunostaining against nestin reveals more detail, than GFAP or vimentin. Int J Dev Neurosci 19:101–108

    Article  CAS  PubMed  Google Scholar 

  • Koirala S, Corfas G (2010) Identification of novel glial genes by single-cell transcriptional profiling of Bergmann glial cells from mouse cerebellum. PLoS ONE 5(2):e9198. doi:10.1371/journal.pone.0009198

    Article  PubMed Central  PubMed  Google Scholar 

  • Krum JM, Rosenstein JM (1999) Transient coexpression of nestin, GFAP, and vascular endothelial growth factor in mature reactive astroglia following neural grafting or brain wounds. Exp Neurol 160:348–360

    Article  CAS  PubMed  Google Scholar 

  • Latov N, Nilaver G, Zimmerman EA, Johnson WG, Silverman AI, Defendini R, Cote L (1979) Fibrillary astrocytes proliferate in response to brain injury: a study combining immunoperoxidase technique for glial fibrillary acidic protein and autoradiography of tritiated thymidine. Dev Biol 72:381–384

    Article  CAS  PubMed  Google Scholar 

  • Lendahl U, Zimmermann LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595

    Article  CAS  PubMed  Google Scholar 

  • Malhotra SK, Shnitka TK, Elbrink J (1990) Reactive astrocytes: a review. Cytobios 61:133–160

    CAS  PubMed  Google Scholar 

  • Marvin MJ, Dahlstrand J, Lendahl U, McKay RDG (1998) A rod end deletion in the intermediate filament protein nestin alters its subcellular localization in neuroepithelial cells of transgenic mice. J Cell Sci 111:1951–1961

    CAS  PubMed  Google Scholar 

  • Mathewson AJ, Berry M (1985) Observations on the astrocyte response to a cerebral stab wound in adult rats. Brain Res 327(1–2):61–69

    Article  CAS  PubMed  Google Scholar 

  • Maxwell WL, Follows R, Ashhurst DE, Berry M (1990) The response of the cerebral hemisphere of the rat to injury. I. The mature rat. Philos Trans R Soc Lond B Biol Sci 328:479–500

    Article  CAS  PubMed  Google Scholar 

  • Miyake T, Okada M, Kitamura T (1992) Reactive proliferation of astrocytes studied by immunohistochemistry for proliferating cell nuclear antigen. Brain Res 590:300–302

    Article  CAS  PubMed  Google Scholar 

  • Mudo G, Bonomo P, Di Liberto V, Frinchi M, Fuxe K, Belluardo N (2009) The FGF-2/FGFRs neurotrophic system promotes neurogenesis in the adult brain. J Neural Transm 116:995–1005

    Article  CAS  PubMed  Google Scholar 

  • Nieto-Sampedro M (1998) Neuron-glia ensembles and mammalian CNS lesion repair. In: Castellano B, Gonzalez B, Nieto-Sampedro M (eds) Understanding glial cells. Kluwer Academic Publishers, Boston, pp 255–270

    Chapter  Google Scholar 

  • Norenberg MD (1994) Astrocyte responses to CNS injury. J Neuropath Exp Neur 53:213–220

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  • Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes, cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  CAS  PubMed  Google Scholar 

  • Sahin Kaya S, Mahmood A, Li Y, Yavuz E, Chopp M (1999) Expression of nestin after traumatic brain injury in rat brain. Brain Res 840:153–157

    Article  CAS  PubMed  Google Scholar 

  • Schiffer D, Giordana MT, Cavalla P, Vigliani MC, Attanasio A (1993) Immunohistochemistry of glial reaction after injury in the rat: double stainings and markers of cell proliferation. Int J Dev Neurosci 11:269–280

    Article  CAS  PubMed  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–682 (PDF Supplement)

    Google Scholar 

  • Sievers J, Pehlemann JW, Gude S, Berry M (1994) Meningeal cells organize the superficial glia limitans of cerebellum and produce components of both the interstitial matrix and the basement membrane. J Neurocytol 23:135–149

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sottile V, Li M, Scotting PJ (2006) Stem cell marker expression in the Bergmann glia population of the adult mouse brain. Brain Res 1099:8–17

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Watanabe M (2002) Cytodifferentiation of Bergmann glia and its relationship with Purkinje cells. Anat Sci Int 77:94–108

    Article  PubMed  Google Scholar 

  • Yamada K, Fukaya M, Shibata T, Kurihara H, Tanaka K, Inoue K, Watanabe M (2000) Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells. J Comp Neurol 418:106–120

    Article  CAS  PubMed  Google Scholar 

  • Yang HY, Lieska N, Shao D, Kriho V, Wu CM, Pappas GD (1997) A subpopulation of reactive astrocytes at the immediate site of cerebral cortical injury. Exp Neurol 146:199–205

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Anatomy, Histology and Embryology. We thank A. Őz, Zs. Vidra, Sz. Deák, and Zs. Feher for their technical assistance and E. Oszwald for her assistance with triple immunofluorescence. We gratefully acknowledge Dr. Sz. Mezey for the gift calbindin antibody and Dr. K. Kis-Petik for her help using FIJI program. Dr DS. Veres has greatly contributed to the statistical interpretation of our work. We thank Dr. J. Takács and Dr. RG Walker for their comments on the manuscript and A. Bárány for her assistance in the literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Istvan Adorjan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

221_2014_3900_MOESM1_ESM.jpg

The cerebellar cortex on the seventh postoperative day following a coarse lesion. The immunopattern of the BG depends on the distance from the lesion track (L). Rectangle marks territory enlarged in Fig. 2g. (JPEG 495 kb)

221_2014_3900_MOESM2_ESM.jpg

The cerebellar cortex on the seventh postoperative day following a coarse lesion. The immunopattern of the BG depends on the distance from the lesion track (L). Rectangle marks territory enlarged in Fig. 2i (JPEG 159 kb)

221_2014_3900_MOESM3_ESM.jpg

The cerebellar cortex on the 30th postoperative day. GFAP immunopositivity was prevailing in BG (arrows) situated in the molecular layer (ML) and PCL of the tissue repair (asterisk). Nestin was restricted mainly to the mid-segments of BG (arrowheads). Purkinje cells (double arrowheads) were found only in the distant zone (DZ) but not in the area of tissue repair (asterisk) (JPEG 682 kb)

221_2014_3900_MOESM4_ESM.avi

The three-dimensional reconstruction of the traumatic zone at POD2. Nestin is visualized in red, GFAP is displayed in green, and DAPI is shown in blue. The mid-segments of the BG processes were nestin and GFAP immunonegative. Only the perikarya, initial segments, and the endfeet of BG displayed nestin immunopositivity in the traumatic zone (AVI 4631 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adorjan, I., Bindics, K., Galgoczy, P. et al. Phases of intermediate filament composition in Bergmann glia following cerebellar injury in adult rat. Exp Brain Res 232, 2095–2104 (2014). https://doi.org/10.1007/s00221-014-3900-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-3900-6

Keywords

Navigation