Bach M (2007) The Freiburg Visual Acuity Test–Variability unchanged by post-hoc re-analysis. Graefe’s Arch Clin Exp Ophthalmol 245(7):965–971
Article
Google Scholar
Baguley T (2012) Calculating and graphing within-subject confidence intervals for ANOVA. Behav Res Methods 44(1):158–175
PubMed
Article
Google Scholar
Ball K, Sekuler R (1980) Human vision favors centrifugal motion. Perception 9(3):317–325
PubMed
Article
CAS
Google Scholar
Bennett SJ, Orban de Xivry JJ, Barnes GR, Lefèvre P (2007) Target acceleration can be extracted and represented within the predictive drive to ocular pursuit. J Neurophysiol 98(3):1405–1414
PubMed
Article
Google Scholar
Bieg HJ, Bresciani JP, Bülthoff HH, Chuang LL (2012) Looking for discriminating is different from looking for looking’s sake. PLoS ONE 7(9):e45,445
Article
CAS
Google Scholar
Bieg HJ, Chuang LL, Bülthoff HH, Bresciani JP (2013) Asymmetries in saccade reaction times to pursuit (in preparation)
Blohm G, Missal M, Lefevre P (2005) Processing of retinal and extraretinal signals for memory-guided saccades during smooth pursuit. J Neurophysiol 93(3):1510–1522
Google Scholar
Boucher L, Palmeri TJ, Logan GD, Schall JD (2007) Inhibitory control in mind and brain: an interactive race model of countermanding saccades. Psychol Rev 114(2):376–397
PubMed
Article
Google Scholar
Bruyn BD, Orban G (1988) Human velocity and direction discrimination measured with random dot patterns. Vis Res 28(12):1323–1335
PubMed
Article
Google Scholar
Carl JR, Gellman RS (1987) Human smooth pursuit: stimulus-dependent responses. J Neurophysiol 57(5):1446–1463
PubMed
CAS
Google Scholar
Carpenter RHS, Williams M (1995) Neural computation of log likelihood in control of saccadic eye movements. Nature 377(6544):59–62
PubMed
Article
CAS
Google Scholar
de Brouwer S, Missal M, Barnes G, Lefèvre P (2002a) Quantitative analysis of catch-up saccades during sustained pursuit. J Neurophysiol 87:1772–1780
PubMed
Google Scholar
de Brouwer S, Yuksel D, Blohm G, Missal M (2002b) What triggers catch-up saccades during visual tracking? J Neurophysiol 87:1646–1650
PubMed
Google Scholar
Dafoe JM, Armstrong IT, Munoz DP (2007) The influence of stimulus direction and eccentricity on pro- and anti-saccades in humans. Exp Brain Res 179(4):563–570
PubMed
Article
Google Scholar
Deubel H, Schneider WX (1996) Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis Res 36(12):1827–1837
PubMed
Article
CAS
Google Scholar
Fischer B, Weber H, Biscaldi M, Aiple F, Otto P, Stuhr V (1993) Separate populations of visually guided saccades in humans: reaction times and amplitudes. Exp Brain Res 92:528–541
PubMed
Article
CAS
Google Scholar
Fuller JH (1996) Eye position and target amplitude effects on human visual saccadic latencies. Exp Brain Res 109(3):457–466
PubMed
Article
CAS
Google Scholar
Gauthier GM, Vercher JL, Mussa Ivaldi F, Marchetti E (1988) Oculomanual tracking of visual targets: control learning, coordination control and coordination model. Exp Brain Res 73:127–137
PubMed
Article
CAS
Google Scholar
Gellman RS, Carl JR (1991) Motion processing for saccadic eye movements in humans. Exp Brain Res 84(3):660–667
PubMed
Article
CAS
Google Scholar
Hanes DP, Schall JD (1996) Neural control of voluntary movement initiation. Science 274(5286):427–430
PubMed
Article
CAS
Google Scholar
Heinen SJ, Jin Z, Watamaniuk SNJ (2011) Flexibility of foveal attention during ocular pursuit. J Vis 11:1–12
Article
Google Scholar
Hodgson TL (2002) The location marker effect. Saccadic latency increases with target eccentricity. Exp Brain Res 145(4):539–542
PubMed
Article
Google Scholar
Hoffman JE, Subramaniam B (1995) The role of visual attention in saccadic eye movements. Percept Psychophys 57(6):787–795
PubMed
Article
CAS
Google Scholar
Jancke D, Erlhagen W, Schöner G, Dinse HR (2004) Shorter latencies for motion trajectories than for flashes in population responses of cat primary visual cortex. J Physiol 556(Pt 3):971–982
PubMed
Article
CAS
Google Scholar
Jonikaitis D, Deubel H, De’sperati C (2009) Time gaps in mental imagery introduced by competing saccadic tasks. Vis Res 49(17):2164–2175
PubMed
Article
Google Scholar
Kalesnykas R, Hallett PE (1994) Retinal eccentricity and the latency of eye saccades. Vis Res 34(4):517–531
PubMed
Article
CAS
Google Scholar
Kanai R, van der Geest JN, Frens MA (2003) Inhibition of saccade initiation by preceding smooth pursuit. Exp Brain Res 148(3):300–307
PubMed
CAS
Google Scholar
Kathmann N, Hochrein A, Uwer R (1999) Effects of dual task demands on the accuracy of smooth pursuit eye movements. Psychophysiology 36(2):158–163
PubMed
Article
CAS
Google Scholar
Khan A, Lefèvre P, Heinen S, Blohm G (2010) The default allocation of attention is broadly ahead of smooth pursuit. J Vis 10(13):1–17
Article
Google Scholar
Koken PW, Erkelens CJ (1992) Influences of hand movements on eye movements in tracking tasks in man. Exp Brain Res 88(3):657–664
PubMed
Article
CAS
Google Scholar
Kornylo K, Dill N, Saenz M, Krauzlis RJ (2003) Cancelling of pursuit and saccadic eye movements in humans and monkeys. J Neurophysiol 89(6):2984–2999
PubMed
Article
Google Scholar
Kowler E, Anderson E, Dosher B, Blaser E (1995) The role of attention in the programming of saccades. Vis Res 35(13):1897–1916
PubMed
Article
CAS
Google Scholar
Krauzlis RJ (2005) The control of voluntary eye movements: new perspectives. Neurosci 11(2):124–137
Google Scholar
Lovejoy LP, Fowler Ga, Krauzlis RJ (2009) Spatial allocation of attention during smooth pursuit eye movements. Vis Res 49(10):1275–1285
PubMed
Article
Google Scholar
Mateeff S, Hohnsbein J (1988) Perceptual latencies are shorter for motion towards the fovea than for motion away. Vis Res 28(6):711–719
PubMed
Article
CAS
Google Scholar
Mateeff S, Bohdanecky Z, Hohnsbein J, Ehrenstein WH, Yakimoff N (1991a) A constant latency difference determines directional anisotropy in visual motion perception. Vis Res 31(12):2235–2237
PubMed
Article
CAS
Google Scholar
Mateeff S, Yakimoff N, Hohnsbein J (1991b) Selective directional sensitivity in visual motion perception. Vis Res 31(I):131–138
PubMed
Article
CAS
Google Scholar
Mather JA, Putchat C (1983) Parallel Ocular and manual Tracking Responses to a Continuously Moving Visual Target. J Mot Behav 15(1):29–38
PubMed
Article
CAS
Google Scholar
Missal M, Keller EL (2002) Common inhibitory mechanism for saccades and smooth-pursuit eye movements. J Neurophysiol 88(4):1880–1892
PubMed
CAS
Google Scholar
Montagnini A, Chelazzi L (2005) The urgency to look: prompt saccades to the benefit of perception. Vis Res 45(27):3391–3401
PubMed
Article
Google Scholar
Morey RD (2008) Confidence intervals from normalized data : a correction to Cousineau (2005). Tutor Quant Methods Psychol 4(2):61–64
Google Scholar
Moschner C, Crawford TJ, Heide W, Trillenberg P, Kömpf D, Kennard C (1999) Deficits of smooth pursuit initiation in patients with degenerative cerebellar lesions. Brain 122(11):2147–2158
PubMed
Article
Google Scholar
Naito T, Sato H, Osaka N (2010) Direction anisotropy of human motion perception depends on stimulus speed. Vis Res 50(18):1862–1866
PubMed
Article
Google Scholar
Orban de Xivry JJ, Lefèvre P (2007) Saccades and pursuit: two outcomes of a single sensorimotor process. J Physiol 584(1):11–23
Article
CAS
Google Scholar
Paré M, Munoz DP (2001) Expression of a re-centering bias in saccade regulation by superior colliculus neurons. Exp Brain Res 137(3-4):354–368
PubMed
Article
Google Scholar
Posner MI (1980) Orienting of attention. Q J Exp Psychol 32(1):3–25
PubMed
Article
CAS
Google Scholar
Prinzmetal W, McCool C, Park S (2005) Attention: reaction time and accuracy reveal different mechanisms. J Exp Psychol Gen 134(1):73–92
PubMed
Article
Google Scholar
Rashbass C (1961) The relationship between saccadic and smooth tracking eye movements. J Physiol 159:326–338
PubMed
CAS
Google Scholar
Raymond JE (1994) Directional anisotropy of motion sensitivity across the visual field. Vis Res 34(8):1029–1037
PubMed
Article
CAS
Google Scholar
Reddi BAJ, Carpenter RHS (2000) The influence of urgency on decision time. Nat Neurosci 3(8):827–830
PubMed
Article
CAS
Google Scholar
Scudder Ca, Kaneko CS, Fuchs AF (2002) The brainstem burst generator for saccadic eye movements: a modern synthesis. Exp Brain Res 142(4):439–62
PubMed
Article
Google Scholar
Seya Y, Mori S (2012) Spatial attention and reaction times during smooth pursuit eye movement. Atten Percept Psychophys 74(3):493–509
PubMed
Article
Google Scholar
Shagass C, Roemer R, Amadeo M (1976) Eye-tracking performance and engagement of attention. Arch Gen Psychiatry 33:121–125
Google Scholar
Sweeney JA, Clementz BA, Haas GL, Escobar MD, Drake K, Frances AJ (1994) Eye tracking dysfunction in schizophrenia: characterization of component eye movement abnormalities, diagnostic specificity, and the role of attention. J Abnorm Psychol 103(2):222–230
PubMed
Article
CAS
Google Scholar
Tanaka M, Yoshida T, Fukushima K (1998) Latency of saccades during smooth-pursuit eye movement in man. Directional asymmetries. Exp Brain Res 121(1):92–98
PubMed
Article
CAS
Google Scholar
Tychsen L, Lisberger S (1986) Visual motion processing for the initiation of smooth-pursuit eye movements in humans. J Neurophysiol 56(4):953–968
PubMed
CAS
Google Scholar
Van Gelder P, Anderson S, Herman E, Lebedev S, Tsui WH (1990) Saccades in pursuit eye tracking reflect motor attention processes. Compr Psychiatry 31(3):253–260
PubMed
Article
CAS
Google Scholar
Van Gelder P, Lebedev S, Liu PM, Tsui WH (1995a) Anticipatory saccades in smooth pursuit: task effects and pursuit vector after saccades. Vis Res 35(5):667–678
PubMed
Article
CAS
Google Scholar
Van Gelder P, Lebedev S, Tsui WH (1995b) Predictive human pursuit and ”orbital goal” of microstimulated smooth eye movements. J Neurophysiol 74(3):1358–1361
PubMed
CAS
Google Scholar
van Donkelaar P (1999) Spatiotemporal modulation of attention during smooth pursuit eye movements. Neuroreport 10(12):2523–2526
PubMed
Article
Google Scholar
van Donkelaar P, Drew AS (2002) The allocation of attention during smooth pursuit eye movements. In: Hyönä J, Munoz DP, Heide W, Radach R (eds.), Progress in brain research. Elsevier Science, Amsterdam
Google Scholar
Vercher J, Gauthier G (1992) Oculo-manual coordination control: ocular and manual tracking of visual targets with delayed visual feedback of the hand motion. Exp Brain Res 90(3):599–609
PubMed
Article
CAS
Google Scholar
Wang P, Nikolić D (2011) An LCD monitor with sufficiently precise timing for research in vision. Front Hum Neurosci 5(August):85
Google Scholar
Xia R, Barnes G (1999) Oculomanual coordination in tracking of pseudorandom target motion stimuli. J Mot Behav 31(1):21–38
PubMed
Article
Google Scholar