Skip to main content

Advertisement

Log in

Visually guided adjustments of body posture in the roll plane

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Body position relative to gravity is continuously updated to prevent falls. Therefore, the brain integrates input from the otoliths, truncal graviceptors, proprioception and vision. Without visual cues estimated direction of gravity mainly depends on otolith input and becomes more variable with increasing roll-tilt. Contrary, the discrimination threshold for object orientation shows little modulation with varying roll orientation of the visual stimulus. Providing earth-stationary visual cues, this retinal input may be sufficient to perform self-adjustment tasks successfully, with resulting variability being independent of whole-body roll orientation. We compared conditions with informative (earth-fixed) and non-informative (body-fixed) visual cues. If the brain uses exclusively retinal input (if earth-stationary) to solve the task, trial-to-trial variability will be independent from the subject’s roll orientation. Alternatively, central integration of both retinal (earth-fixed) and extra-retinal inputs will lead to increasing variability when roll-tilted. Subjects, seated on a motorized chair, were instructed to (1) align themselves parallel to an earth-fixed line oriented earth-vertical or roll-tilted 75° clockwise; (2) move a body-fixed line (aligned with the body-longitudinal axis or roll-tilted 75° counter-clockwise to it) by adjusting their body position until the line was perceived earth-vertical. At 75° right-ear-down position, variability increased significantly (p < 0.05) compared to upright in both paradigms, suggesting that, despite the earth-stationary retinal cues, extra-retinal input is integrated. Self-adjustments in the roll-tilted position were significantly (p < 0.01) more precise for earth-fixed cues than for body-fixed cues, underlining the importance of earth-stable visual cues when estimates of gravity become more variable with increasing whole-body roll.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anastasopoulos D, Haslwanter T, Bronstein A, Fetter M, Dichgans J (1997) Dissociation between the perception of body verticality and the visual vertical in acute peripheral vestibular disorder in humans. Neurosci Lett 233:151–153

    Article  PubMed  CAS  Google Scholar 

  • Anastasopoulos D, Bronstein A, Haslwanter T, Fetter M, Dichgans J (1999) The role of somatosensory input for the perception of verticality. Ann N Y Acad Sci 871:379–383

    Article  PubMed  CAS  Google Scholar 

  • Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31:125–150

    Article  PubMed  CAS  Google Scholar 

  • Angelaki DE, Gu Y, DeAngelis GC (2009) Multisensory integration: psychophysics, neurophysiology, and computation. Curr Opin Neurobiol 19:452–458

    Article  PubMed  CAS  Google Scholar 

  • Appelle S (1972) Perception and discrimination as a function of stimulus orientation: the “oblique effect” in man and animals. Psychol Bull 78:266–278

    Article  PubMed  CAS  Google Scholar 

  • Aubert H (1861) Eine scheinbare bedeutende Drehung von Objekten bei Neigung des Kopfes nach rechts oder links. Virchows Arch 20:381–393

    Article  Google Scholar 

  • Baker JT, Harper TM, Snyder LH (2003) Spatial memory following shifts of gaze. I. Saccades to memorized world-fixed and gaze-fixed targets. J Neurophysiol 89:2564–2576. doi:10.1152/jn.00610.2002

    Article  PubMed  Google Scholar 

  • Barra J, Marquer A, Joassin R, Reymond C, Metge L, Chauvineau V, Perennou D (2010) Humans use internal models to construct and update a sense of verticality. Brain 133:3552–3563. doi:10.1093/brain/awq311

    Article  PubMed  Google Scholar 

  • Bertolini G, Ramat S (2010) Velocity storage in the human vertical rotational vestibulo-ocular reflex. Exp Brain Res 209:51–63. doi:10.1007/s00221-010-2518-6

    Article  PubMed  Google Scholar 

  • Bisdorff AR, Wolsley CJ, Anastasopoulos D, Bronstein AM, Gresty MA (1996) The perception of body verticality (subjective postural vertical) in peripheral and central vestibular disorders. Brain 119(Pt 5):1523–1534

    Article  PubMed  Google Scholar 

  • Cai RH, Pouget A, Schlag-Rey M, Schlag J (1997) Perceived geometrical relationships affected by eye-movement signals. Nature 386:601–604

    Article  PubMed  CAS  Google Scholar 

  • Collewijn H, van der SJ, Ferman L, Jansen TC (1985) Human ocular counterroll: assessment of static and dynamic properties from electromagnetic scleral coil recordings. Exp Brain Res 59:185–196

    Article  PubMed  CAS  Google Scholar 

  • Dassonville P, Schlag J, Schlag-Rey M (1995) The use of egocentric and exocentric location cues in saccadic programming. Vis Res 35:2191–2199

    Article  PubMed  CAS  Google Scholar 

  • De Vrijer M, Medendorp WP, Van Gisbergen JA (2009) Accuracy-precision trade-off in visual orientation constancy. J Vis 9(9):1–15

    Article  PubMed  Google Scholar 

  • Diamond SG, Markham CH, Furuya N (1982) Binocular counterrolling during sustained body tilt in normal humans and in a patient with unilateral vestibular nerve section. Ann Otol Rhinol Laryngol 91:225–229

    PubMed  CAS  Google Scholar 

  • Fernandez C, Goldberg JM (1976) Physiology of peripheral neurons innervating otolith organs of the squirrel monkey. II. Directional selectivity and force-response relations. J Neurophysiol 39:985–995

    PubMed  CAS  Google Scholar 

  • Fernandez C, Goldberg JM, Abend WK (1972) Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J Neurophysiol 35:978–987

    PubMed  CAS  Google Scholar 

  • Harris CM (1998) The Fourier analysis of biological transients. J Neurosci Methods 83:15–34

    Article  PubMed  CAS  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Howard IP (1982) Human visual orientation. Wiley, New York

    Google Scholar 

  • Kaptein RG, Van Gisbergen JA (2004) Interpretation of a discontinuity in the sense of verticality at large body tilt. J Neurophysiol 91:2205–2214

    Article  PubMed  Google Scholar 

  • Luyat M, Gentaz E, Corte TR, Guerraz M (2001) Reference frames and haptic perception of orientation: body and head tilt effects on the oblique effect. Percept Psychophys 63:541–554

    Article  PubMed  CAS  Google Scholar 

  • Mast F, Jarchow T (1996) Perceived body position and the visual horizontal. Brain Res Bull 40:393–397

    Article  PubMed  CAS  Google Scholar 

  • McIntyre J, Lipshits M, Zaoui M, Berthoz A, Gurfinkel V (2001) Internal reference frames for representation and storage of visual information: the role of gravity. Acta Astronaut 49:111–121

    Article  PubMed  CAS  Google Scholar 

  • Mezey LE, Curthoys IS, Burgess AM, Goonetilleke SC, MacDougall HG (2004) Changes in ocular torsion position produced by a single visual line rotating around the line of sight–visual “entrainment” of ocular torsion. Vis Res 44:397–406

    Article  PubMed  Google Scholar 

  • Minor LB, Lasker DM, Backous DD, Hullar TE (1999) Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. I. Normal responses. J Neurophysiol 82:1254–1270

    PubMed  CAS  Google Scholar 

  • Mittelstaedt H (1983) A new solution to the problem of the subjective vertical. Naturwissenschaften 70:272–281

    Article  PubMed  CAS  Google Scholar 

  • Mittelstaedt H (1998) Origin and processing of postural information. Neurosci Biobehav Rev 22:473–478

    Article  PubMed  CAS  Google Scholar 

  • Orban GA, Vandenbussche E, Vogels R (1984) Human orientation discrimination tested with long stimuli. Vis Res 24:121–128

    Article  PubMed  CAS  Google Scholar 

  • Schoene H (1964) On the role of gravity in human spatial orientation. Aerosp Med 35:764–772

    PubMed  CAS  Google Scholar 

  • Schuler JR, Bockisch CJ, Straumann D, Tarnutzer AA (2010) Precision and accuracy of the subjective haptic vertical in the roll plane. BMC Neurosci 11:83. doi:10.1186/1471-2202-11-83

    Article  PubMed  Google Scholar 

  • Tarnutzer AA, Bockisch C, Straumann D, Olasagasti I (2009a) Gravity dependence of subjective visual vertical variability. J Neurophysiol 102:1657–1671

    Article  PubMed  CAS  Google Scholar 

  • Tarnutzer AA, Bockisch CJ, Straumann D (2009b) Head roll dependent variability of subjective visual vertical and ocular counterroll. Exp Brain Res 195:621–626

    Article  PubMed  Google Scholar 

  • Tarnutzer AA, Bockisch CJ, Olasagasti I, Straumann D (2012) Egocentric and allocentric alignment tasks are affected by otolith input. J Neurophysiol 107:3095–3106. doi:10.1152/jn.00724.2010

    Article  PubMed  Google Scholar 

  • Van Beuzekom AD, Van Gisbergen JA (2000) Properties of the internal representation of gravity inferred from spatial-direction and body-tilt estimates. J Neurophysiol 84:11–27

    PubMed  Google Scholar 

  • Van Huffel S, Vandewalle J (1991) The total least squares problem. Computational aspects and analysis. Society for industrial and applied mathematics, Philadelphia

    Book  Google Scholar 

  • Wade SW, Curthoys IS (1997) The effect of ocular torsional position on perception of the roll-tilt of visual stimuli. Vis Res 37:1071–1078

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Albert Züger for technical assistance and Itsaso Olasagasti for statistical advice. Alexander A. Tarnutzer was supported by the Swiss National Science Foundation (3200B0-105434), the Betty and David Koetser Foundation for Brain Research, Zurich, Switzerland, and the Center of Integrative Human Physiology, University of Zurich, Switzerland.

Conflict of interest

The authors report no conflict of interest. The funding sources had no involvement in the study design, the collection, analysis and interpretation of the data, the writing of the report or in the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tarnutzer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarnutzer, A.A., Bockisch, C.J. & Straumann, D. Visually guided adjustments of body posture in the roll plane. Exp Brain Res 227, 111–120 (2013). https://doi.org/10.1007/s00221-013-3492-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3492-6

Keywords

Navigation